Skip to main content
Log in

P1 finite element methods for a weighted elliptic state-constrained optimal control problem

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We investigate a P1 finite element method for a two-dimensional weighted optimal control problem arising from a three-dimensional (3D) axisymmetric elliptic state-constrained optimal control problem with Dirichlet boundary conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Assous, F., Ciarlet, Jr., P., Labrunie, S.: Theoretical tools to solve the axisymmetric Maxwell equations. Math. Methods Appl. Sci. 25, 49–78 (2002)

  2. Belhachmi, Z., Bernardi, C., Deparis, S.: Weighted Clément operator and application to the finite element discretization of the axisymmetric Stokes problem. Numer. Math. 105, 217–247 (2006)

    Article  MathSciNet  Google Scholar 

  3. Bernardi, C., Dauge, M., Maday, Y.: Spectral Methods for Axisymmetric Domains, Vol. 3 of Series in Applied Mathematics (Paris), Gauthier-Villars, Éditions Scientifiques Et Médicales Elsevier, Paris. Numerical algorithms and tests due to Mejdi Azaïez (1999)

  4. Brenner, S., Gedicke, J., Sung, L.-Y.: P1 finite element methods for an elliptic optimal control problems with pointwise state constraints. IMA J. Numer. Anal 40, 1–28 (2020)

    Article  MathSciNet  Google Scholar 

  5. Brenner, S.C., Davis, C.B., Sung, L.-Y.: A partition of unity method for a class of fourth order elliptic variational inequalities. Comput. Methods Appl. Mech. Eng. 276, 612–626 (2014)

    Article  MathSciNet  Google Scholar 

  6. Brenner, S.C., Oh, M., Pollock, S., Porwal, K., Schedensack, M., Sharma, N.S.: A c0 interior penalty method for elliptic distributed optimal control problems in three dimensions with pointwise state constraints, in Topics in Numerical Partial Differential Equations and Scientific Computing, vol. 160 of IMA Vol. Math. Appl., pp. 1–22. Springer, New York (2016)

  7. Brenner, S. C., Oh, M., Sung, L.-Y.: P1 finite element methods for an elliptic state-constrained distributed optimal control problem with Neumann boundary conditions, Results in Appl. Math. https://doi.org/10.1016/j.rinam.2019.100090 (2020)

  8. Brenner, S.C., Sung, L.-Y.: A new convergence analysis of finite element methods for elliptic distributed optimal control problems with pointwise state constraints, SIAM. J. Control Optim. 55, 2289–2304 (2017)

    Article  MathSciNet  Google Scholar 

  9. Brenner, S.C., Sung, L.-Y., Zhang, Y.: Post-processing procedures for an elliptic distributed optimal control problem with pointwise state constraints. Appl. Numer. Math. 95, 99–117 (2015)

    Article  MathSciNet  Google Scholar 

  10. Brenner, S.C., Sung, L.-Y., Zhang, Y.: C0 interior penalty methods for an elliptic state-constrained optimal control problem with Neumann boundary condition. J. Comput. Appl. Math. 350, 212–232 (2019)

    Article  MathSciNet  Google Scholar 

  11. Caffarelli, L.A., Friedman, A.: The obstacle problem for the biharmonic operator. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 6, 151–184 (1979)

    MathSciNet  MATH  Google Scholar 

  12. Casas, E., Mateos, M., Vexler, B.: New regularity results and improved error estimates for optimal control problems with state constraints. ESAIM Control Optim. Calc. Var. 20, 803–822 (2014)

    Article  MathSciNet  Google Scholar 

  13. Ciarlet, Jr., P., Jung, B., Kaddouri, S., Labrunie, S., Zou, J.: The F,ourier singular complement method for the Poisson problem. I. Prismatic domains. Numer. Math. 101, 423–450 (2005)

  14. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland Publishing Company, Amsterdam (1978)

    MATH  Google Scholar 

  15. Dauge, M.: Elliptic Boundary Value Problems on Corner Domains, Vol. 1341 of Lecture Notes in Mathematics. Springer, Berlin (1988). Smoothness and asymptotics of solutions

    Google Scholar 

  16. Deckelnick, K., Hinze, M.: Convergence of a finite element approximation to a state-constrained elliptic control problem. SIAM J. Numer. Anal. 45, 1937–1953 (2007)

    Article  MathSciNet  Google Scholar 

  17. Ekeland, I., Témam, R.: Convex Analysis and Variational Problems, Vol. 28 of Classics in Applied Mathematics, Society for Industrial and Applied Mathematics. (SIAM), Philadelphia. Translated from the French (1999)

  18. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions, Textbooks in Mathematics, CRC Press. FL, revised ed., Boca Raton (2015)

    Google Scholar 

  19. Grisvard, P.: Elliptic problems in nonsmooth domains, vol. 69 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2011). Reprint of the 1985 original [MR0775683], With a foreword by Susanne C. Brenner.

    Book  Google Scholar 

  20. Hinze, M., Pinnau, R., Ulbrich, M., Ulbrich, S.: Optimization with PDE constraints, Vol. 23 of Mathematical Modelling: Theory and Applications. Springer, New York (2009)

    MATH  Google Scholar 

  21. Kinderlehrer, D., Stampacchia, G.: An introduction to variational inequalities and their applications, vol. 31 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2000). Reprint of the 1980 original

    Book  Google Scholar 

  22. Liu, W., Gong, W., Yan, N.: A new finite element approximation of a state-constrained optimal control problem. J. Comput. Math. 27, 97–114 (2009)

    MathSciNet  MATH  Google Scholar 

  23. Maz’ya, V., Rossmann, J.: Elliptic Equations in Polyhedral Domains, Vol. 162 of Mathematical Surveys and Monographs. American Mathematical Society, Providence (2010)

    Book  Google Scholar 

  24. Meyer, C.: Error estimates for the finite-element approximation of an elliptic control problem with pointwise state and control constraints. Control Cybernet. 37, 51–83 (2008)

    MathSciNet  MATH  Google Scholar 

  25. Rudin, W.: Real and Complex Analysis, 3rd edn. McGraw-Hill Book Co., New York (1987)

    MATH  Google Scholar 

  26. Schwartz, L.: Théorie Des Distributions, Publications De l’Institut De MathéMatique De L’université De Strasbourg, No. IX-X. Nouvelle éDition, EntiéRement CorrigéE, Refondue Et Augmentée, Hermann (1966)

  27. Tröltzsch, F.: Optimal Control of Partial Differential Equations, Vol. 112 of Graduate Studies in Mathematics, American Mathematical Society, Providence. Theory, methods and applications, Translated from the 2005 German original by Jürgen Sprekels (2005)

Download references

Acknowledgments

The authors would like to thank Susanne Brenner for providing the opportunity and support to visit Center for Computation and Technology at Louisiana State University to work on this project.

Funding

The work of the first author was partially supported by NSF grant number DM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minah Oh.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, M., Ma, L. & Wang, K. P1 finite element methods for a weighted elliptic state-constrained optimal control problem. Numer Algor 87, 1–17 (2021). https://doi.org/10.1007/s11075-020-00955-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-020-00955-0

Keywords

Mathematics Subject Classification (2010)

Navigation