Skip to main content
Log in

Chebyshev spectral methods for multi-order fractional neutral pantograph equations

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper is concerned with the application of the spectral tau and collocation methods to delay multi-order fractional differential equations with vanishing delay \(rx\ (0<r<1)\). The fractional derivatives are described in the Caputo sense. The model solution is expanded in terms of Chebyshev polynomials. The convergence of the proposed approaches is investigated in the weighted \(L^2\)-norm. Numerical examples are provided to highlight the convergence rate and the flexibility of this approach. Our results confirm that nonlocal numerical methods are best suited to discretize fractional differential equations as they naturally take the global behavior of the solution into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ahmad, I., Mukhtar, A.: Stochastic approach for the solution of multi-pantograph differential equation arising in cell-growth model. Appl. Math. Comput. 261, 360–372 (2015)

    MathSciNet  MATH  Google Scholar 

  2. Alsuyuti, M., Doha, E., Ezz-Eldien, S., Bayoumi, B., Baleanu, D.: Modified Galerkin algorithm for solving multi type fractional differential equations. Math. Appl. Sci. 42, 1389–1412 (2019)

    MathSciNet  MATH  Google Scholar 

  3. Baker, C.T.: Retarded differential equations. J. Comput. Appl. Math. 125(1–2), 309–335 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Balachandran, K., Kiruthika, S., Trujillo, J.: Existence of solutions of nonlinear fractional pantograph equations. Acta Math. Sci. 33(3), 712–720 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bellen, A., Zennaro, M.: Numerical Methods for Delay Differential Equations. Oxford University Press, Oxford (2013)

    MATH  Google Scholar 

  6. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods. Springer, Berlin (2006)

    Book  MATH  Google Scholar 

  7. Dabiri, A., Butcher, E.: Numerical solution of multi-order fractional differential equations with multiple delays via spectral collocation methods. Appl. Math. Model. 56, 424–448 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dabiri, A., Butcher, E.A.: Efficient modified Chebyshev differentiation matrices for fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 50, 284–310 (2017)

    Article  MathSciNet  Google Scholar 

  9. Dabiri, A., Butcher, E.A.: Stable fractional Chebyshev differentiation matrix for the numerical solution of multi-order fractional differential equations. Nonlinear Dyn. 90(1), 185–201 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dabiri, A., Karimi, L.: A Chebyshev pseudospectral method for solving fractional-order optimal control problems. In: 2019 American Control Conference (ACC), pp. 4917–4922. IEEE, New York (2019)

  11. Dehghan, M., Abbaszadeh, M.: A Legendre spectral element method (SEM) based on the modified bases for solving neutral delay distributed-order fractional damped diffusion-wave equation. Math. Methods Appl. Sci. 41(9), 3476–3494 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. Doha, E., Bhrawy, A., Ezz-Eldien, S.: Efficient Chebyshev spectral methods for solving multi-term fractional orders differential equations. Appl. Math. Model. 35(12), 5662–5672 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. El-Ajou, A., Oqielat, M., Al-Zhour, Z., Momani, S.: Analytical numerical solutions of the fractional multi-pantograph system: two attractive methods and comparisons. Results Phys. 14, 102500 (2019)

    Article  Google Scholar 

  14. Ezz-Eldien, S.: New quadrature approach based on operational matrix for solving a class of fractional variational problems. J. Comput. Phys. 317, 362–381 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ezz-Eldien, S.: On solving fractional logistic population models with applications. Comput. Appl. Math. 37(5), 6392–6409 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ezz-Eldien, S.: On Solving Systems of Multi-pantograph Equations via Spectral Tau Method, vol. 321, pp. 63–73. Elsevier, Berlin (2018)

    MATH  Google Scholar 

  17. Ezz-Eldien, S.S., Doha, E.H.: Fast and precise spectral method for solving pantograph type Volterra integro-differential equations. Numer. Algorithms 81(1), 57–77 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  18. Huang, C., Vandewalle, S.: Discretized stability and error growth of the nonautonomous pantograph equation. SIAM J. Numer. Anal. 42(5), 2020–2042 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Iqbal, M.A., Saeed, U., Mohyud-Din, S.T.: Modified Laguerre wavelets method for delay differential equations of fractional-order. Egypt. J. Basic Appl. Sci. 2(1), 50–54 (2015)

    Article  Google Scholar 

  20. Iserles, A.: On the generalized pantograph functional–differential equation. Eur. J. Appl. Math. 4(1), 1–38 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kulish, V., José, L.: Application of fractional calculus to fluid mechanics. J. Fluid Eng. 124, 803–806 (2002)

    Article  Google Scholar 

  22. Ma, X., Huang, C.: Spectral collocation method for linear fractional integro-differential equations. Appl. Math. Model. 38(4), 1434–1448 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Magin, R.L.: Fractional calculus models of complex dynamics in biological tissues. Comput. Math. Appl. 59(5), 1586–1593 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Meral, F., Royston, T., Magin, R.: Fractional calculus in viscoelasticity: an experimental study. Commun. Nonlinear Sci. Numer. Simul. 15, 939–945 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Nemati, S., Lima, P., Sedaghat, S.: An Effective Numerical Method for Solving Fractional Pantograph Differential Equations Using Modification of Hat Functions, vol. 131, pp. 174–189. Elsevier, Berlin (2018)

    MATH  Google Scholar 

  26. Prakash, A., Goyal, M., Gupta, S.: Fractional variational iteration method for solving time-fractional Newell–Whitehead–Segel equation. Nonlinear Eng. 8, 164–171 (2019)

    Article  Google Scholar 

  27. Rahimkhani, P., Ordokhani, Y., Babolian, E.: A new operational matrix based on Bernoulli wavelets for solving fractional delay differential equations. Numer. Algorithms 74, 223–245 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. Rahimkhani, P., Ordokhani, Y., Babolian, E.: Numerical solution of fractional pantograph differential equations by using generalized fractional-order Bernoulli wavelet. J. Comput. Appl. Math. 309, 493–510 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, London (1993)

    MATH  Google Scholar 

  30. Singh, R., Gupta, M.: A comparative study of analytical solutions of space-time fractional hyperbolic-like equations with two reliable methods. Arab J. Basic Appl. Sci. 26, 41–57 (2019)

    Article  Google Scholar 

  31. Tohidi, E., Bhrawy, A., Erfani, K.: A collocation method based on Bernoulli operational matrix for numerical solution of generalized pantograph equation. Appl. Math. Model. 37(6), 4283–4294 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Trif, D.: Direct operatorial tau method for pantograph-type equations. Appl. Math. Comput. 219(4), 2194–2203 (2012)

    MathSciNet  MATH  Google Scholar 

  33. Yang, C.: Modified Chebyshev collocation method for pantograph-type differential equations. Appl. Numer. Math. 134, 132–144 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  34. Yüzbaşı, Ş., Sezer, M.: An exponential approximation for solutions of generalized pantograph-delay differential equations. Appl. Math. Model. 37(22), 9160–9173 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zaky, M., Machado, J.T.: Multi-dimensional spectral tau methods for distributed-order fractional diffusion equations. Comput. Math. Appl. 8, 1–13 (2019)

    Article  Google Scholar 

  36. Zaky, M.A.: Existence, uniqueness and numerical analysis of solutions of tempered fractional boundary value problems. Appl. Numer. Math. 145, 1–29 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zaky, M.A., Ameen, I.G.: On the rate of convergence of spectral collocation methods for nonlinear multi-order fractional initial value problems. Comput. Appl. Math. 38, 1–27 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zaky, M.A., Ameen, I.G.: A priori error estimates of a Jacobi spectral method for nonlinear systems of fractional boundary value problems and related Volterra–Fredholm integral equations with smooth solutions. Numer. Algorithms 2019, 1–27 (2019)

    Google Scholar 

Download references

Acknowledgements

The authors would like to express special thanks to the referees for carefully reading, constructive comments and valuable remarks which significantly improved the quality of this paper. The authors extend their appreciation to Distinguished Scientist Fellowship Program (DSFP) at King Saud University (Saudi Arabia).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Ezz-Eldien.

Ethics declarations

Conflict of interest

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ezz-Eldien, S.S., Wang, Y., Abdelkawy, M.A. et al. Chebyshev spectral methods for multi-order fractional neutral pantograph equations. Nonlinear Dyn 100, 3785–3797 (2020). https://doi.org/10.1007/s11071-020-05728-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05728-x

Keywords

Navigation