Skip to main content
Log in

Withdrawal Effects Following Methionine Exposure in Adult Zebrafish

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Methionine (Met) has important functions for homeostasis of various species, including zebrafish. However, the increased levels of this amino acid in plasma, a condition known as hypermethioninemia, can lead to cell alterations. Met is crucial for the methylation process and its excesses interfere with the cell cycle, an effect that persists even after the removal of this amino acid. Some conditions may lead to a transient increase of this amino acid with unexplored persistent effects of Met exposure. In the present study, we investigated the behavioral and neurochemical effects after the withdrawal of Met exposure. Zebrafish were divided into two groups: control and Met-treated group (3 mM) for 7 days and after maintained for 8 days in tanks containing only water. In the eighth day post-exposure, we evaluated locomotion, anxiety, aggression, social interaction, and memory, as well as oxidative stress parameters, amino acid, and neurotransmitter levels in the zebrafish brain. Our results showed that 8 days after Met exposure, the treated group showed decreased locomotion and aggressive responses, as well as impaired aversive memory. The Met withdrawal did not change thiobarbituric acid reactive substances, reactive oxygen species, and nitrite levels; however, we observed a decrease in antioxidant enzymes superoxide dismutase, catalase, and total thiols. Epinephrine and cysteine levels were decreased after the Met withdrawal whereas carnitine and creatine levels were elevated. Our findings indicate that a transient increase in Met causes persistent neurotoxicity, observed by behavioral and cognitive changes after Met withdrawal and that the mechanisms underlying these effects are related to changes in antioxidant system, amino acid, and neurotransmitter levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gulsun M, Oznur T, Aydemir E, Ozcelik F, Erdem M, Zincir S, Akgul O, Kurt Y (2016) Possible relationship between amino acids, aggression and psychopathy. Int J Psychiatry Clin Pract 20:91–100. https://doi.org/10.3109/13651501.2016.1144771

    Article  CAS  PubMed  Google Scholar 

  2. Martínez Y, Li X, Liu G, Bin P, Yan W, Más D, Valdivié M, Hu CAA et al (2017) The role of methionine on metabolism, oxidative stress, and diseases. Amino Acids 49:2091–2098. https://doi.org/10.1007/s00726-017-2494-2

    Article  CAS  PubMed  Google Scholar 

  3. Stipanuk MH (2004) Role of the liver in regulation of body cysteine and taurine levels: a brief review. Neurochem Res 29:105–110. https://doi.org/10.1023/B:NERE.0000010438.40376.c9

    Article  CAS  PubMed  Google Scholar 

  4. Wu C, Gopal KV, Moore EJ, Gross GW (2014) Antioxidants l-carnitine and d-methionine modulate neuronal activity through GABAergic inhibition. J Neural Transm 121:683–693. https://doi.org/10.1007/s00702-014-1170-x

    Article  CAS  PubMed  Google Scholar 

  5. Keller E, Boisonnas R, Vigneaud V (1950) The origin of methil group of epinephrine. J Biol Chem 183:627–632

    CAS  Google Scholar 

  6. Millar AL (2008) The methylation, neurotransmitter, and antioxidant connections between folate and depression. Altern Med Rev 13:216–226

    Google Scholar 

  7. Bhattacharyya S, Varshney U (2016) Evolution of initiator tRNAs and selection of methionine as the initiating amino acid. RNA Biol 13:810–819. https://doi.org/10.1080/15476286.2016.1195943

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lu SC (2000) S-Adenosylmethionine. Int J Biochem Cell Biol 32:391–395. https://doi.org/10.1016/S1357-2725(99)00139-9

    Article  CAS  PubMed  Google Scholar 

  9. Garlick PJ (2006) Toxicity of methionine in humans. Rev Rhum:1722–1725

  10. Allen J, Power B, Abedin A, Purcell O, Knerr I, Monavari A (2019) Plasma methionine concentrations and incidence of hypermethioninemic encephalopathy during infancy in a large cohort of 36 patients with classical homocystinuria in the Republic of Ireland. JIMD Rep 47:41–46. https://doi.org/10.1002/jmd2.12029

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bjursell MK, Blom HJ, Cayuela JA, Engvall ML, Lesko N, Balasubramaniam S, Brandberg G, Halldin M et al (2011) Adenosine kinase deficiency disrupts the methionine cycle and causes hypermethioninemia, encephalopathy, and abnormal liver function. Am J Hum Genet 89:507–515. https://doi.org/10.1016/j.ajhg.2011.09.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chien Y, Abdenur JE, Baronio F et al (2015) Mudd’s disease (MAT I/III deficiency): a survey of data for MAT1A homozygotes and compound heterozygotes. Orphanet J Rare Dis 10:99. https://doi.org/10.1186/s13023-015-0321-y

    Article  PubMed  PubMed Central  Google Scholar 

  13. Sklirou E, Lichter-Konecki U (2018) Inborn errors of metabolism with cognitive impairment: metabolism defects of phenylalanine, homocysteine and methionine, purine and pyrimidine, and creatine. Pediatr Clin N Am 65:267–277. https://doi.org/10.1016/j.pcl.2017.11.009

    Article  Google Scholar 

  14. Furujo M, Kinoshita M, Nagao M, Kubo T (2012) Methionine adenosyltransferase I/III deficiency: neurological manifestations and relevance of S-adenosylmethionine. Mol Genet Metab 107:253–256. https://doi.org/10.1016/j.ymgme.2012.08.002

    Article  CAS  PubMed  Google Scholar 

  15. Perry TL, Hardwick DF, Dixon GH et al (1965) Hypermethioninemia: a metabolic disorder associated with cirrhosis, islet cell hyperplasia, and renal tubular degeneration. Pediatrics 36:236 LP – 250

    CAS  PubMed  Google Scholar 

  16. Mudd SH (2011) Hypermethioninemias of genetic and non-genetic origin: a review. Am J Med Genet Part C Semin Med Genet 157:3–32. https://doi.org/10.1002/ajmg.c.30293

    Article  CAS  Google Scholar 

  17. Muriello MJ, Viall S, Bottiglieri T, Cusmano-Ozog K, Ferreira CR (2017) Confirmation that MAT1A p.Ala259Val mutation causes autosomal dominant hypermethioninemia. Mol Genet Metab Rep 13:9–12. https://doi.org/10.1016/j.ymgmr.2017.07.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Barić I, Erdol S, Saglam H, et al (2016) Glycine N-methyltransferase deficiency: a member of dysmethylating liver disorders? In: JIMD Reports. pp 101–106

  19. Strauss KA, Ferreira C, Bottiglieri T, Zhao X, Arning E, Zhang S, Zeisel SH, Escolar ML et al (2015) Liver transplantation for treatment of severe S-adenosylhomocysteine hydrolase deficiency. Mol Genet Metab 116:44–52. https://doi.org/10.1016/j.ymgme.2015.06.005

    Article  CAS  PubMed  Google Scholar 

  20. Tran C, Bonafé L, Nuoffer J-M, Rieger J, Berger MM (2018) Adult classical homocystinuria requiring parenteral nutrition: pitfalls and management. Clin Nutr 37:1114–1120. https://doi.org/10.1016/j.clnu.2017.07.013

    Article  CAS  PubMed  Google Scholar 

  21. Park H-D, Lee DH, Choi T-Y, Lee YK, Kim JW, Ki CS, Lee YW (2009) Clinical, biochemical, and genetic analysis of a Korean neonate with hereditary tyrosinemia type 1. Clin Chem Lab Med 47:930–933. https://doi.org/10.1515/CCLM.2009.223

    Article  CAS  PubMed  Google Scholar 

  22. Ohura T, Kobayashi K, Abukawa D, Tazawa Y, Aikawa JI, Sakamoto O, Saheki T, Iinuma K (2003) A novel inborn error of metabolism detected by elevated methionine and/or galactose in newborn screening: neonatal intrahepatic cholestasis caused by citrin deficiency. Eur J Pediatr 162:317–322. https://doi.org/10.1007/s00431-003-1171-5

    Article  CAS  PubMed  Google Scholar 

  23. Schweinberger BM, Wyse ATS (2016) Mechanistic basis of hypermethioninemia. Amino Acids 48:2479–2489. https://doi.org/10.1007/s00726-016-2302-4

    Article  CAS  PubMed  Google Scholar 

  24. Stefanello FM, Monteiro SC, Matté C, Scherer EBS, Netto CA, Wyse ATS (2007) Hypermethioninemia increases cerebral acetylcholinesterase activity and impairs memory in rats. Neurochem Res 32:1868–1874. https://doi.org/10.1007/s11064-007-9464-0

    Article  CAS  PubMed  Google Scholar 

  25. Vuaden FC, Savio LEB, Rico EP, Mussulini BHM, Rosemberg DB, de Oliveira DL, Bogo MR, Bonan CD et al (2016) Methionine exposure alters glutamate uptake and adenine nucleotide hydrolysis in the zebrafish brain. Mol Neurobiol 53:200–209. https://doi.org/10.1007/s12035-014-8983-3

    Article  CAS  PubMed  Google Scholar 

  26. Benavides MA, Bosland MC, da Silva CP, Gomes Sares CT, Cerqueira de Oliveira AM, Kemp R, dos Reis RB, Martins VR et al (2014) L-Methionine inhibits growth of human pancreatic cancer cells. Anti-Cancer Drugs 25:200–203. https://doi.org/10.1097/CAD.0000000000000038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Soares MSP, Viau CM, Saffi J, Costa MZ, da Silva TM, Oliveira PS, Azambuja JH, Barschak AG et al (2017) Acute administration of methionine and/or methionine sulfoxide impairs redox status and induces apoptosis in rat cerebral cortex. Metab Brain Dis 32:1693–1703. https://doi.org/10.1007/s11011-017-0054-9

    Article  CAS  PubMed  Google Scholar 

  28. Stefanello FM, Matté C, Pederzolli CD, Kolling J, Mescka CP, Lamers ML, de Assis AM, Perry ML et al (2009) Hypermethioninemia provokes oxidative damage and histological changes in liver of rats. Biochimie 91:961–968. https://doi.org/10.1016/j.biochi.2009.04.018

    Article  CAS  PubMed  Google Scholar 

  29. Stefanello FM, Scherer EB, Kurek AG et al (2007) Effect of hypermethioninemia on some parameters of oxidative stress and on Na(+),K (+)-ATPase activity in hippocampus of rats. Metab Brain Dis 22:172–182. https://doi.org/10.1007/s11011-007-9052-7

    Article  CAS  PubMed  Google Scholar 

  30. Chakraborty HJ, Rout AK, Behera BK, Parhi J, Parida PK, Das BK (2018) Insights into the aquaporin 4 of zebrafish (Danio rerio) through evolutionary analysis, molecular modeling and structural dynamics. Gene Rep 11:101–109. https://doi.org/10.1016/j.genrep.2018.03.001

    Article  Google Scholar 

  31. Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, Muffato M, Collins JE, Humphray S et al (2013) The zebrafish reference genome sequence and its relationship to the human genome. Nature 496:498–503. https://doi.org/10.1038/nature12111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rico EP, Rosemberg DB, Seibt KJ, Capiotti KM, da Silva RS, Bonan CD (2011) Zebrafish neurotransmitter systems as potential pharmacological and toxicological targets. Neurotoxicol Teratol 33:608–617. https://doi.org/10.1016/j.ntt.2011.07.007

    Article  CAS  PubMed  Google Scholar 

  33. Capiotti KM, Fazenda L, Nazario LR, Menezes FP, Kist LW, Bogo MR, da Silva RS, Wyse AT et al (2013) Arginine exposure alters ectonucleotidase activities and morphology of zebrafish larvae (Danio rerio). Int J Dev Neurosci 31:75–81. https://doi.org/10.1016/j.ijdevneu.2012.09.002

    Article  CAS  PubMed  Google Scholar 

  34. Quintana AM, Yu HC, Brebner A, Pupavac M, Geiger EA, Watson A, Castro VL, Cheung W et al (2017) Mutations in THAP11 cause an inborn error of cobalamin metabolism and developmental abnormalities. Hum Mol Genet 26:2838–2849. https://doi.org/10.1093/hmg/ddx157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Savio LEB, Vuaden FC, Kist LW, Pereira TC, Rosemberg DB, Bogo MR, Bonan CD, Wyse ATS (2013) Proline-induced changes in acetylcholinesterase activity and gene expression in zebrafish brain: reversal by antipsychotic drugs. Neuroscience 250:121–128. https://doi.org/10.1016/j.neuroscience.2013.07.004

    Article  CAS  PubMed  Google Scholar 

  36. Vuaden FC, Savio LEB, Piato AL, Pereira TC, Vianna MR, Bogo MR, Bonan CD, Wyse ATS (2012) Long-term methionine exposure induces memory impairment on inhibitory avoidance and alters acetylcholinesterase activity and expression in zebrafish (Danio rerio). Neurochem Res 37:1545–1553. https://doi.org/10.1007/s11064-012-0749-6

    Article  CAS  PubMed  Google Scholar 

  37. Wager K, Mahmood F, Russell C (2014) Modelling inborn errors of metabolism in zebrafish. J Inherit Metab Dis 37:483–495. https://doi.org/10.1007/s10545-014-9696-5

    Article  CAS  PubMed  Google Scholar 

  38. Miller AH, Haroon E, Raison CL, Felger JC (2013) Cytokine targets in the brain: Impact on neurotransmitters and neurocircuits. Depress Anxiety 30:297–306. https://doi.org/10.1002/da.22084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Parker MO, Annan LV, Kanellopoulos AH, Brock AJ, Combe FJ, Baiamonte M, Teh MT, Brennan CH (2014) The utility of zebrafish to study the mechanisms by which ethanol affects social behavior and anxiety during early brain development. Prog Neuro-Psychopharmacology Biol Psychiatry 55:94–100. https://doi.org/10.1016/j.pnpbp.2014.03.011

    Article  CAS  Google Scholar 

  40. Giacomini ACVV, Abreu MS, Giacomini LV, Siebel AM, Zimerman FF, Rambo CL, Mocelin R, Bonan CD et al (2016) Fluoxetine and diazepam acutely modulate stress induced-behavior. Behav Brain Res 296:301–310. https://doi.org/10.1016/j.bbr.2015.09.027

    Article  CAS  PubMed  Google Scholar 

  41. Nabinger DD, Altenhofen S, Bitencourt PER, Nery LR, Leite CE, Vianna MRMR, Bonan CD (2018) Nickel exposure alters behavioral parameters in larval and adult zebrafish. Sci Total Environ 624:1623–1633. https://doi.org/10.1016/j.scitotenv.2017.10.057

    Article  CAS  PubMed  Google Scholar 

  42. Zanandrea R, Abreu MSMS, Piato A et al (2018) Lithium prevents scopolamine-induced memory impairment in zebrafish. Neurosci Lett 664:34–37. https://doi.org/10.1016/j.neulet.2017.11.010

    Article  CAS  PubMed  Google Scholar 

  43. Westerfield M (2000) The Zebrafish book. A Guide for The Laboratory Use of Zebrafish (Danio rerio)

  44. Altenhofen S, Nabinger DD, Wiprich MT, Pereira TCB, Bogo MR, Bonan CD (2017) Tebuconazole alters morphological, behavioral and neurochemical parameters in larvae and adult zebrafish (Danio rerio). Chemosphere 180:483–490. https://doi.org/10.1016/j.chemosphere.2017.04.029

    Article  CAS  PubMed  Google Scholar 

  45. Mocelin R, Marcon M, da Rosa Araujo AS, Herrmann AP, Piato A (2019) Withdrawal effects following repeated ethanol exposure are prevented by N-acetylcysteine in zebrafish. Prog Neuro-Psychopharmacology Biol Psychiatry 93:161–170. https://doi.org/10.1016/j.pnpbp.2019.03.014

    Article  CAS  Google Scholar 

  46. Bevilaqua F, Sachett A, Chitolina R, Garbinato C, Gasparetto H, Marcon M, Mocelin R, Dallegrave E et al (2020) A mixture of fipronil and fungicides induces alterations on behavioral and oxidative stress parameters in zebrafish. Ecotoxicology 29:140–147. https://doi.org/10.1007/s10646-019-02146-7

    Article  CAS  PubMed  Google Scholar 

  47. Agostini JF, Toé HCZD, Vieira KM, Baldin SL, Costa NLF, Cruz CU, Longo L, Machado MM et al (2018) Cholinergic system and oxidative stress changes in the brain of a zebrafish model chronically exposed to ethanol. Neurotox Res 33:749–758. https://doi.org/10.1007/s12640-017-9816-8

    Article  CAS  PubMed  Google Scholar 

  48. Stefanello FM, Matté C, Scherer EB, Wannmacher CMD, Wajner M, Wyse ATS (2007) Chemically induced model of hypermethioninemia in rats. J Neurosci Methods 160:1–4. https://doi.org/10.1016/j.jneumeth.2006.07.029

    Article  CAS  PubMed  Google Scholar 

  49. Gerlai R, Lahav M, Guo S, Rosenthal A (2000) Drinks like a fish: Zebra fish (Danio rerio) as a behavior genetic model to study alcohol effects. Pharmacol Biochem Behav 67:773–782. https://doi.org/10.1016/S0091-3057(00)00422-6

    Article  CAS  PubMed  Google Scholar 

  50. Cachat J, Stewart A, Grossman L, Gaikwad S, Kadri F, Chung KM, Wu N, Wong K et al (2010) Measuring behavioral and endocrine responses to novelty stress in adult zebrafish. Nat Protoc 5:1786–1799. https://doi.org/10.1038/nprot.2010.140

    Article  CAS  PubMed  Google Scholar 

  51. Blank M, Guerim LD, Cordeiro RF, Vianna MRM (2009) A one-trial inhibitory avoidance task to zebrafish: Rapid acquisition of an NMDA-dependent long-term memory. Neurobiol Learn Mem 92:529–534. https://doi.org/10.1016/j.nlm.2009.07.001

    Article  CAS  PubMed  Google Scholar 

  52. Wang X, Roper MG (2014) Measurement of DCF fluorescence as a measure of reactive oxygen species in murine islets of Langerhans. Anal Methods 6:3019–3024. https://doi.org/10.1039/C4AY00288A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chen X, Zhong Z, Xu Z, Chen L, Wang Y (2010) 2′,7′-Dichlorodihydrofluorescein as a fluorescent probe for reactive oxygen species measurement: Forty years of application and controversy. Free Radic Res 44:587–604. https://doi.org/10.3109/10715761003709802

    Article  CAS  PubMed  Google Scholar 

  54. LeBel CP, Ali SF, McKee M, Bondy SC (1990) Organometal-induced increases in oxygen reactive species: the potential of 2′,7′-dichlorofluorescin diacetate as an index of neurotoxic damage. Toxicol Appl Pharmacol 104:17–24. https://doi.org/10.1016/0041-008X(90)90278-3

    Article  CAS  PubMed  Google Scholar 

  55. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358. https://doi.org/10.1016/0003-2697(79)90738-3

    Article  CAS  PubMed  Google Scholar 

  56. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem 126:131–138. https://doi.org/10.1016/0003-2697(82)90118-x

    Article  CAS  PubMed  Google Scholar 

  57. Miao L, St. Clair DK (2009) Regulation of superoxide dismutase genes: Implications in disease. Free Radic Biol Med 47:344–356. https://doi.org/10.1016/j.freeradbiomed.2009.05.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. MARKLUND S, MARKLUND G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47:469–474. https://doi.org/10.1111/j.1432-1033.1974.tb03714.x

    Article  CAS  PubMed  Google Scholar 

  59. Aebi H (1984) Oxygen radicals in biological systems. Methods Enzymol 105:121–126. https://doi.org/10.1016/S0076-6879(84)05016-3

    Article  CAS  PubMed  Google Scholar 

  60. Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77. https://doi.org/10.1016/0003-9861(59)90090-6

    Article  CAS  PubMed  Google Scholar 

  61. Altenhofen S, Wiprich MT, Nery LR, Leite CE, Vianna MRMR, Bonan CD (2017) Manganese(II) chloride alters behavioral and neurochemical parameters in larvae and adult zebrafish. Aquat Toxicol 182:172–183. https://doi.org/10.1016/j.aquatox.2016.11.013

    Article  CAS  PubMed  Google Scholar 

  62. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  63. Lowry OH, Rosebrough A, Farr L, Randall RJ (1994) Protein measurement with the folin phenol reagent. Anal Biochem 217:220–230. https://doi.org/10.1016/0304-3894(92)87011-4

    Article  Google Scholar 

  64. Weaver ICG, Champagne FA, Brown SE, Dymov S, Sharma S, Meaney MJ, Szyf M (2005) Reversal of maternal programming of stress responses in adult offspring through methyl supplementation: altering epigenetic marking later in life. J Neurosci 25:11045–11054. https://doi.org/10.1523/JNEUROSCI.3652-05.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Meshalkina DA, Kysil EV, Antonova KA, Demin KA, Kolesnikova TO, Khatsko SL, Gainetdinov RR, Alekseeva PA et al (2018) The effects of chronic amitriptyline on zebrafish behavior and monoamine neurochemistry. Neurochem Res 43:1191–1199. https://doi.org/10.1007/s11064-018-2536-5

    Article  CAS  PubMed  Google Scholar 

  66. Salim S (2017) Oxidative stress and the central nervous system. J Pharmacol Exp Ther 360:201 LP – 205. https://doi.org/10.1124/jpet.116.237503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Coccaro EF, Lee R, Gozal D (2016) Elevated plasma oxidative stress markers in individuals with intermittent explosive disorder and correlation with aggression in humans. Biol Psychiatry 79:127–135. https://doi.org/10.1016/j.biopsych.2014.01.014

    Article  CAS  PubMed  Google Scholar 

  68. Yenkoyan K, Harutyunyan H, Harutyunyan A (2018) A certain role of SOD/CAT imbalance in pathogenesis of autism spectrum disorders. Free Radic Biol Med 123:85–95. https://doi.org/10.1016/j.freeradbiomed.2018.05.070

    Article  CAS  PubMed  Google Scholar 

  69. Cunha MP, Lieberknecht V, Ramos-Hryb AB, Olescowicz G, Ludka FK, Tasca CI, Gabilan NH, Rodrigues ALS (2016) Creatine affords protection against glutamate-induced nitrosative and oxidative stress. Neurochem Int 95:4–14. https://doi.org/10.1016/j.neuint.2016.01.002

    Article  CAS  PubMed  Google Scholar 

  70. Marques EP, Wyse ATS (2019) Creatine as a neuroprotector: an actor that can play many parts. Neurotox Res 36:411–423. https://doi.org/10.1007/s12640-019-00053-7

    Article  PubMed  Google Scholar 

  71. Kopin IJ (1984) Avenues of investigation for the role of catecholamines in anxiety. Psychopathology 17:83–97. https://doi.org/10.1159/000284081

    Article  CAS  PubMed  Google Scholar 

  72. Henrique AJ, Gabrielloni MC, Rodney P, Barbieri M (2018) Non-pharmacological interventions during childbirth for pain relief, anxiety, and neuroendocrine stress parameters: a randomized controlled trial. Int J Nurs Pract 24:e12642. https://doi.org/10.1111/ijn.12642

    Article  PubMed  Google Scholar 

  73. Winter B, Breitenstein C, Mooren FC, Voelker K, Fobker M, Lechtermann A, Krueger K, Fromme A et al (2007) High impact running improves learning. Neurobiol Learn Mem 87:597–609. https://doi.org/10.1016/j.nlm.2006.11.003

    Article  PubMed  Google Scholar 

  74. Dennis RL (2016) Adrenergic and noradrenergic regulation of poultry behavior and production. Domest Anim Endocrinol 56:S94–S100. https://doi.org/10.1016/j.domaniend.2016.02.007

    Article  CAS  PubMed  Google Scholar 

  75. Morris KA, Gold PE (2013) Epinephrine and glucose modulate training-related CREB phosphorylation in old rats: relationships to age-related memory impairments. Exp Gerontol 48:115–127. https://doi.org/10.1016/j.exger.2012.11.010

    Article  CAS  PubMed  Google Scholar 

  76. Toth M, Ziegler M, Sun P, Gresack J, Risbrough V (2013) Impaired conditioned fear response and startle reactivity in epinephrine-deficient mice. Behav Pharmacol 24:1–9. https://doi.org/10.1097/FBP.0b013e32835cf408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Goddard AW, Ball SG, Martinez J, Robinson MJ, Yang CR, Russell JM, Shekhar A (2010) Current perspectives of the roles of the central norepinephrine system in anxiety and depression. Depress Anxiety 27:339–350. https://doi.org/10.1002/da.20642

    Article  CAS  PubMed  Google Scholar 

  78. Brosnan JT, Brosnan ME, Bertolo RFP, Brunton JA (2007) Methionine: a metabolically unique amino acid. Livest Sci 112:2–7. https://doi.org/10.1016/j.livsci.2007.07.005

    Article  Google Scholar 

  79. Ferreira GC, McKenna MC (2017) L-Carnitine and acetyl-l-carnitine roles and neuroprotection in developing brain. Neurochem Res 42:1661–1675. https://doi.org/10.1007/s11064-017-2288-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Feng L, Wu H, Song G, Lu C, Li YH, Qu LN, Chen SG, Liu XM et al (2016) Chronical sleep interruption-induced cognitive decline assessed by a metabolomics method. Behav Brain Res 302:60–68. https://doi.org/10.1016/j.bbr.2015.12.039

    Article  CAS  PubMed  Google Scholar 

  81. Oliet SHR, Piet R, Poulain DA (2001) Control of glutamate clearance and synaptic efficacy by glial coverage of neurons. Science 292(80):923 LP – 926. https://doi.org/10.1126/science.1059162

    Article  CAS  PubMed  Google Scholar 

  82. Bender A, Auer DP, Merl T et al (2005) Creatine supplementation lowers brain glutamate levels in Huntington’s disease. J Neurol 252:36–41. https://doi.org/10.1007/s00415-005-0595-4

    Article  CAS  PubMed  Google Scholar 

  83. Lentz SR (2005) Mechanisms of homocysteine-induced atherothrombosis. J Thromb Haemost 3:1646–1654. https://doi.org/10.1111/j.1538-7836.2005.01364.x

    Article  CAS  PubMed  Google Scholar 

  84. Taes YEC, Delanghe JR, De Vriese AS et al (2003) Creatine supplementation decreases homocysteine in an animal model of uremia. Kidney Int 64:1331–1337. https://doi.org/10.1046/j.1523-1755.2003.00206.x

    Article  CAS  PubMed  Google Scholar 

  85. Kolling J, Scherer EBS, Siebert C, Marques EP, dos Santos TM, Wyse ATS (2014) Creatine prevents the imbalance of redox homeostasis caused by homocysteine in skeletal muscle of rats. Gene 545:72–79. https://doi.org/10.1016/j.gene.2014.05.005

    Article  CAS  PubMed  Google Scholar 

  86. Banjac A, Perisic T, Sato H, Seiler A, Bannai S, Weiss N, Kölle P, Tschoep K et al (2008) The cystine/cysteine cycle: a redox cycle regulating susceptibility versus resistance to cell death. Oncogene 27:1618–1628. https://doi.org/10.1038/sj.onc.1210796

    Article  CAS  PubMed  Google Scholar 

  87. Stojanović M, Šćepanović L, Todorović D, Mitrović D, Šćepanović V, Šćepanović R, Ilić S, Šćepanović T et al (2018) Suppression of methionine-induced colon injury of young rats by cysteine and N-acetyl-l-cysteine. Mol Cell Biochem 440:53–64. https://doi.org/10.1007/s11010-017-3155-1

    Article  CAS  PubMed  Google Scholar 

  88. Tueting P, Davis JM, Veldic M, Pibiri F, Kadriu B, Guidotti A, Costa E (2010) L-Methionine decreases dendritic spine density in mouse frontal cortex. Neuroreport 21:543–548. https://doi.org/10.1097/WNR.0b013e3283373126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brasil (CAPES)-finance code 001, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS), and Instituto Nacional de Ciências e Tecnologia para Doenças Cerebrais, Excitotoxicidade e Neuroproteção. R.Z and C.D.B. (Proc. 305035/2015-0) were the recipients of a fellowship from CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla Denise Bonan.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Ethics Approval

All protocols were approved by the Animal Care Committee of the Pontifical Catholic University of Rio Grande do Sul (8758-CEUA-PUCRS). This study was registered in the Sistema Nacional de Gestão do Patrimônio Genético e Conhecimento Tradicional Associado - SISGEN (Protocol No. A3B073D).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zanandrea, R., Wiprich, M.T., Altenhofen, S. et al. Withdrawal Effects Following Methionine Exposure in Adult Zebrafish. Mol Neurobiol 57, 3485–3497 (2020). https://doi.org/10.1007/s12035-020-01970-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-020-01970-x

Keywords

Navigation