Skip to main content
Log in

Expression analysis of defense-related genes in cucumber (Cucumis sativus L.) against Phytophthora melonis

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Phytophthora melonis is one of the most destructive cucumber disease, causing severe economic losses in the globe. Despite intense research efforts made in the past years, no permanent cure currently exists for this disease. With the aim to understand the molecular mechanisms of defense against P. melonis, root collars and leaves of four cucumber genotypes consisting of resistant Ramezz; moderately resistant Baby, and very susceptible Mini 6-23 and Extrem, were monitored for quantitative gene expression analysis of the five antifungal and/or anti-oomycete genes (CsWRKY20, CsLecRK6.1, PR3, PR1-1a and LOX1), at three points after inoculation with P. melonis. The gene expression analysis indicated, P. melonis strongly enhanced the expression of these genes after inoculation, in both the leaves and root collars. Further, not only the transcript levels of these genes were significantly higher in resistant and moderately resistance genotypes, but also the time point of the highest relative expression ratio for the five genes was different in the four cucumber genotypes. CsWRKY20 and PR3 showed the maximum expression in Ramezz at 48 h post inoculation (hpi) while CsLecRK6.1, and LOX1 showed the highest expression at 72 hpi. In addition, PR1-1a showed the maximum expression in the Baby at 72 hpi. Root collars responded faster than leaves, and some responses were more strongly up-regulated in root collars than in leaves. The genes found to be involved in disease resistance in two different organs of cucumber after pathogen infection. The results suggest that increased expression of these genes led to activation of defense pathways, and could be responsible for a reduced P. melonis colonization capacity in Ramezz and Baby. Overall, this work represents a valuable resource for future functional genomics studies to unravel molecular mechanisms of Cucumis sativusP. melonis interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Aghighia S, Burgessa TI, Scottbc JK, Calveraand M, St. Hardy GEJ (2016) Isolation and pathogenicity of Phytophthora species from declining Rubus anglocandicans. Plant Pathol 65:451–461

    Google Scholar 

  2. Andersen EJ, Ali S, Byamukama E, Yen Y, Nepal MP (2018) Disease resistance mechanisms in plants. Genes 9(7):339. https://doi.org/10.3390/genes9070339

    Article  CAS  PubMed Central  Google Scholar 

  3. Anil K, Das SN, Podile AR (2014) Induced defense in plants: a short overview. Proc Natl Acad Sci India B 84:669–679

    CAS  Google Scholar 

  4. Bagheri HM, Nasr Esfahani M, Abdossi V, Naderi N (2020) Analysis of candidate genes expression associated with defense responses to root and collar rot disease caused by Phytophthora capsici in peppers Capsicum annuum. Genomics 112(3):2309–2317

    CAS  PubMed  Google Scholar 

  5. Boutrot F, Zipfel C (2017) Function, discovery, and exploitation of plant pattern recognition receptors for broad-spectrum disease resistance. Annu Rev Phytopathol 55:257–286

    CAS  PubMed  Google Scholar 

  6. Bouwmeester K, de Sain M, Weide R, Gouget A, Klamer S, Canut H et al (2011) The lectin receptor kinase LecRK-I.9 is a novel Phytophthora resistance component and a potential host target for a RXLR effector. PLoS Pathog 7:e1001327

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Castellano M, Pallas V, Gomez G (2016) A pathogenic long noncoding RNA redesigns the epigenetic landscape of the infected cells by subverting host Histone Deacetylase 6 activity. N Phytol 211(4):1311–1322

    CAS  Google Scholar 

  8. Chakraborty J, Ghosh P, Sen S, Das S (2018) Epigenetic and transcriptional control of chickpea WRKY40 promoter activity under Fusarium stress and its heterologous expression in Arabidopsis leads to enhanced resistance against bacterial pathogen. Plant Sci 276:250–267

    CAS  PubMed  Google Scholar 

  9. Cui J, Xu P, Meng J, Li J, Jiang N, Luan Y (2018) Transcriptome signatures of tomato leaf induced by Phytophthora infestans and functional identification of transcription factor SpWRKY3. Theor Appl Genet 131(4):787–800

    CAS  PubMed  Google Scholar 

  10. Erwin DC, Ribeiro OK (1996) Phytophthora disease worldwide. APS Press, St. Paul, p 562

    Google Scholar 

  11. Finatto T, Viana VE, Woyann LG, Busanello C, Maia L, Oliveira AC (2018) Can WRKY transcription factors help plants to overcome environmental challenges? Genet Mol Biol 41(3):533–544. https://doi.org/10.1590/1678-4685-GMB-2017-0232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gamir J, Darwiche R, Van’t Hof P, Choudhary V, Stumpe M, Schneiter R, Mauch F (2017) The sterol-binding activity of PATHOGENESIS-RELATED PROTEIN 1 reveals the mode of action of an antimicrobial protein. Plant J 89(3):502–509

    CAS  PubMed  Google Scholar 

  13. Göbel C, Feussner I, Hamberg M, Rosahl S (2002) Oxylipin profiling in pathogen infected potato leaves. Biochim Biophys Acta 1584:55–64

    PubMed  Google Scholar 

  14. Hashemi L, Golparvar AR, Nasr Esfahani M, Golabadi M (2019) Correlation between cucumber genotype and resistance to damping-off disease caused by Phytophthora melonis. Biotechnol Biotechnol Equip 33(1):1494–1504. https://doi.org/10.1080/13102818.2019.1675535

    Article  CAS  Google Scholar 

  15. Hatami N, Aminaee MM, Zohdi H, Tanideh T (2013) Damping-off disease in greenhouse cucumber in Iran. Arch Phytopathol Plant Prot 46(7):796–802

    Google Scholar 

  16. Hussain A, Li X, Weng Y, Liu Z, Ashraf MF, Noman A, Yang S, Ifnan M, Qiu S, Yang Y, Guan D, He S (2018) CaWRKY22 acts as a positive regulator in pepper response to Ralstonia solanacearum by constituting networks with CaWRKY6, CaWRKY27, CaWRKY40, and CaWRKY58. Int J Mol Sci 19(5):1426. https://doi.org/10.3390/ijms19051426

    Article  CAS  PubMed Central  Google Scholar 

  17. Hwang IS, Hwang BK (2010) The pepper 9-lipoxygenase gene CaLOX1 functions in defense and cell death responses to microbial pathogens. Plant Physiol 152(2):948–967. https://doi.org/10.1104/pp.109.147827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ifnan Khan M, Zhang Y, Liu Z, Hu J, Liu C, Yang S, Hussain A, Furqan Ashraf M, Noman A, Shen L, Yang F, Guan D, He S (2018) CaWRKY40b in pepper acts as a negative regulator in response to Ralstonia solanacearum by directly modulating defense genes including CaWRKY40. Int J Mol Sci 19(5):1403. https://doi.org/10.3390/ijms19051403

    Article  CAS  PubMed Central  Google Scholar 

  19. Jiang Y, Duan Y, Yin J, Ye S, Zhu J, Zhang F, Lu W, Fan D, Luo K (2014) Genome-wide identification and characterization of the Populus WRKY transcription factor family and analysis of their expression in response to biotic and abiotic stresses. J Exp Bot 65:6629–6644

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Knoth C, Ringler J, Dangl JL, Eulgem T (2007) Arabidopsis WRKY70 is required for full RPP4-mediated disease resistance and basal defense against Hyaloperonospora parasitica. Mol Plant–Microbe Interact 20:120–128

    CAS  PubMed  Google Scholar 

  21. Li C, Ren Y, Jiang S et al (2018) Effects of dietary supplementation of four strains of lactic acid bacteria on growth, immune-related response and genes expression of the juvenile sea cucumber Apostichopus japonicus Selenka. Fish Shellfish Immunol 74:69–75

    CAS  PubMed  Google Scholar 

  22. Liu Q, Li X, Yan S, Yu T, Yang J, Dong J, Zhang S, Zhao J, Yang T, Mao X, Zhu X, Liu B (2018) OsWRKY67 positively regulates blast and bacteria blight resistance by direct activation of PR genes in rice. BMC Plant Biol 18:257

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Mansoori B, Banihashemi Z (1982) Evaluating cucurbit seedling resistance to Phytophthora drechsleri. Plant Dis 66(1):373–376

    Google Scholar 

  24. Maschietto V, Marocco A, Malachova A, Lanubile A (2015) Resistance to Fusarium verticillioides and fumonisin accumulation in maize inbred lines involves an earlier and enhanced expression of lipoxygenase (LOX) genes. J Plant Physiol 188:9–18

    CAS  PubMed  Google Scholar 

  25. McGrath MT (2001) Vegetable MD online: Phytophthora blight of cucurbits. Cooperative Extension, New York State, Cornell University (online publication)

  26. Moghadam GA, Rezayatmand Z, Nasr Esfahani M, Khozaei M (2019) Genetic defense analysis of tomatoes in response to early blight disease, Alternaria alternate. Plant Physiol Biochem 142:500–509

    Google Scholar 

  27. Nasr Esfahani M (2008) The variable differences in onion cultivars to pink root rot disease in Iran. J Gen Plant Pathol 74:235–244

    Google Scholar 

  28. Nasr Esfahani M (2018) Genetic and virulence variation in Fusarium oxysporum f. sp. cepae causing root and basal rot of common onion in Iran. J Phytopathol 166:572–580

    CAS  Google Scholar 

  29. Nasr Esfahani M (2020) Genetic variability and virulence of some Iranian Rhizoctonia solani isolates associated with stem canker and black scurf of potato (Solanum tuberosum L.). J Plant Prot Res 60(1):21–30

    Google Scholar 

  30. Nasr Esfahani M, Chatraee M, Shafizadeh S, Jalaji S (2012) Evaluation of resistance of cucurbit and cucumber cultivars to Phytophthora drechsleri in Greenhouse Iran. Seed Plant Improv J 28:407–417

    Google Scholar 

  31. Nasr Esfahani M, Nasehi A, Rahmanshirazi P, Ghadirian H, Ashtiani FA (2014) Susceptibility assessment of bell pepper genotypes to crown and root rot disease. Arch Phytopathol Plant Prot 47:944–953

    Google Scholar 

  32. Nazavari K, Jamali F, Bayat F, Modarresi M (2016) Evaluation of resistance to seedling damping-off caused by Phytophthora drechsleri in cucumber cultivars under greenhouse conditions. Biol Forum 8:54–60

    Google Scholar 

  33. Niderman T, Genetet I, Bruyere T, Gees R, Stintzi A, Legrand M et al (1995) Pathogenesis-related PR-1 proteins are antifungal—isolation and characterization of 3 14-kilodalton proteins of tomato and of a basic PR-1 of tobacco with inhibitory activity against Phytophthora infestans. Plant Physiol 108:17–27

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Noman A, Liu Z, Aqeel M, Zainab M, Khan MI, Hussain A, Ashraf MF, Li X, Weng Y, He S (2017) Basic leucine zipper domain transcription factors: the vanguards in plant immunity. Biotechnol Lett 39(12):1779–1791

    CAS  PubMed  Google Scholar 

  35. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Pu X, Xie B, Li P, Mao Z, Ling J, Shen H, Zhang J, Huang N, Lin B (2014) Analysis of the defense-related mechanism in cucumber seedlings in relation to root colonization by nonpathogenic Fusarium oxysporum CS-20. FEMS Microbiol Lett 355(2):142–151

    CAS  PubMed  Google Scholar 

  37. Rancé I, Fournier J, Esquerré-Tugaye MT (1998) The incompatible interaction between Phytophthora parasitica var nicotianae race 0 and tobacco is suppressed in transgenic plants expressing antisense lipoxygenase sequences. Proc Natl Acad Sci USA 95:6554–6559

    PubMed  Google Scholar 

  38. Rawat S, Ali S, Mittra B, Grover A (2017) Expression analysis of chitinase upon challenge inoculation to Alternaria wounding and defense inducers in Brassica juncea. Biotechnol Rep 13:72–79

    Google Scholar 

  39. Ren Y, Zhang Z, Liu J, Staub JE, Han Y et al (2009) An integrated genetic and cytogenetic map of the cucumber genome. PLoS ONE 4(6):e5795. https://doi.org/10.1371/journal.pone.0005795

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ruijter JM, Ramakers C, Hoogaars WM, Karlen Y, Bakker O, van den Hoff MJ, Moorman AF (2009) Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res 37(6):e45

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Ruiz Gómez FJ, Pérez-de-Luque A, Sánchez-Cuesta R, Quero JL, Navarro Cerrillo MN (2018) Differences in the response to acute drought and Phytophthora cinnamomi Rands infection in Quercus ilex L. seedlings. Forests 9:634

    Google Scholar 

  42. Rychlik W (2007) OLIGO 7 primer analysis software. In: Yuryev A (ed) PCR primer design. Methods in molecular biologyTM, vol 402. Humana Press, Totowa

    Google Scholar 

  43. Sebastian P, Schaefer H, Telford IR, Renner SS (2010) Cucumber (Cucumis sativus) and melon (C. melo) have numerous wild relatives in Asia and Australia, and the sister species of melon is from Australia. Proc Natl Acad Sci USA 107:14269–14273

    CAS  PubMed  Google Scholar 

  44. Sudisha J, Sharathchandra R, Amruthesh K, Kumar A, Shetty HS (2012) Plant defense: biological control. In: Pathogenesis related proteins in plant defense response. Springer, New York, pp 379–403

  45. Tingquan W, Rui W, Xiaomei X, Xiaoming H, Baojuan S, Yujuan Z, Zhaojuan L, Shaobo L, Yu’e L (2014) Cucumis sativus L-type lectin receptor kinase (CsLecRK) gene family response to Phytophthora melonis, Phytophthora capsici and water immersion in disease resistant and susceptible cucumber cultivars. Gene 549(2):214–222

    Google Scholar 

  46. Van Loon LC, Rep M, Pieterse CMJ (2006) Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol 44:135–162

    PubMed  Google Scholar 

  47. Van Verk MC, Gatz C, Linthorst HJM (2009) Transcriptional regulation of plant defense responses. Adv Bot Res 51:397–438

    Google Scholar 

  48. van den Berg N, Mahomed W, Olivier NA, Swart V, Crampton BG (2018) Transcriptome analysis of an incompatible Persea americanaPhytophthora cinnamomi interaction reveals the involvement of SA- and JA-pathways in a successful defense response. PLoS ONE 13(10):e0205705

    PubMed  PubMed Central  Google Scholar 

  49. Wang J, Tao F, Tian W, Guo Z, Chen X, Xu X, Shang H, Hu X (2017) The wheat WRKY transcription factors TaWRKY49 and TaWRKY62 confer differential high-temperature seedling-plant resistance to Puccinia striiformis f. sp. tritici. PLoS ONE 12(7):e0181963. https://doi.org/10.1371/journal.pone.0181963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang Y, Bouwmeester K (2017) L-type lectin receptor kinases: new forces in plant immunity. PLoS Pathog 13(8):e1006433

    PubMed  PubMed Central  Google Scholar 

  51. Wang ZK, Cheng JY, Fan AQ, Zhao J, Yu ZY, Li YB, Zhang H, Xiao J, Muhammad F et al (2018) LecRK-V, an L-type lectin receptor kinase in Haynaldia villosa, plays positive role in resistance to wheat powdery mildew. Plant Biotechnol J 16:50–62

    CAS  PubMed  Google Scholar 

  52. Wang X, Li J, Guo J, Qiao Q, Guo X, Ma Y (2020) The WRKY transcription factor PlWRKY65 enhances the resistance of Paeonia lactiflora (herbaceous peony) to Alternaria tenuissima. Hortic Res 7:57. https://doi.org/10.1038/s41438-020-0267-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wu T, Wang R, Xu X, He X, Sun B, Zhong Y, Liang Z, Luo S, Lin Y (2014) Cucumis sativus L-type lectin receptor kinase (CsLecRK) gene family response to Phytophthora melonis, Phytophthora capsici and water immersion in disease resistant and susceptible cucumber cultivars. Gene 549:214–222

    CAS  PubMed  Google Scholar 

  54. Xu X, Wang R, Chao J, Lin Y, Jin Q, He X, Luo S, Wu T (2015) The expression patterns of Cucumis sativus WRKY (CsWRKY) family under the condition of inoculation with Phytophthora melonis in disease resistant and susceptible cucumber cultivars. Can J Plant Sci 95:1121–1131

    Google Scholar 

  55. Yang XY, Jiang WJ, Yu HJ (2012) The expression profiling of the lipoxygenase (LOX) family genes during fruit development, abiotic stress and hormonal treatments in cucumber (Cucumis sativus L.). Int J Mol Sci 13(2):2481–2500. https://doi.org/10.3390/ijms13022481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhao T, Wang J, Zhang B, Hou X (2018) Genome-wide analysis of lectin receptor-like kinases in tomato (Solanum lycopersicum) and its association with the infection of tomato yellow leaf curl virus. Plant Mol Biol Report 36:429–438

    CAS  Google Scholar 

Download references

Acknowledgements

Thanks go to Plant Protection Research Division, Isfahan Center for Agricultural and Natural Resources Research and Education (AREEO), Isfahan, Iran and also, Plant Protection Research Institute, Tehran, Iran, for providing facilities to run the project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ahmad Reza Golparvar or Mehdi Nasr-Esfahani.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashemi, L., Golparvar, A.R., Nasr-Esfahani, M. et al. Expression analysis of defense-related genes in cucumber (Cucumis sativus L.) against Phytophthora melonis. Mol Biol Rep 47, 4933–4944 (2020). https://doi.org/10.1007/s11033-020-05520-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05520-5

Keywords

Navigation