Skip to main content

Advertisement

Log in

Computational Fluid Dynamics Study of the Thermochemical Behaviors in an Ironmaking Blast Furnace with Oxygen Enrichment Operation

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The ironmaking blast furnace (BF) is an energy-intensive process, requires a considerable amount of carbon-related materials such as coke, coal, or natural gas, and releases enormous amounts of greenhouse gas (GHG). The oxygen enrichment operation is one promising technology to reduce the carbon footprint in the ironmaking process. However, the oxygen enrichment ratio (OER) varies significantly in practices, and the proper one is still unclear, especially in terms of fuel rate saving and in-furnace phenomena. In this study, a multi-fluid BF model is used to quantitatively study the influence of oxygen enrichment on the BF process in terms of bosh gas volume, top gas composition, and inner thermochemical behaviors of solid–gas–liquid phases. Under the simulation conditions, the results show that for every increase of OER, the blast rate is decreased by ~ 85 m3/min and nitrogen content in reducing gas is decreased by ~ 1.13 pct; also, the top gas temperature is lowered by ~ 17 K, and the flame temperature is increased by 58.4 K. Descending of cohesive zone (CZ) inside the BF is observed with the region volume ratio decreased by ~ 0.102; the chemical reserve zone of wustite becomes much narrower and lower inside the BF, but does not disappear. The potential of carbon footprint mitigation in the BF process is discussed with the optimal OER recommended, 7.5 pct under the present simulation conditions. This model can help to build a comprehensive understanding of the fuel rate saving and CO2 emission reduction of a BF adopting an oxygen enrichment operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. K. Kanbara, T. Hagiwara, A. Shigemi, S. Kondo, Y. Kanayama, K. Wakabayashi, and N. Hiramoto: Tetsu-to-Hagané, 1976, vol. 62, pp. 535-46.

    CAS  Google Scholar 

  2. K. Kojima, T. Nist, T. Yamaguchi, H. Nakama, and S. Ida: Tetsu-to-Hagané, 1976, vol. 62, pp. 570-9.

    CAS  Google Scholar 

  3. K. Sasaki, M. Hatano, M. Watanabe, T. Shimoda, K. Yokotani, T. Ito, and T. Yakoi: Tetsu-to-Hagané, 1976, vol. 62, pp. 580-91.

    Google Scholar 

  4. M. SasakiI, K. Ono, A. Suzuki, Y. Okuno, K. Yoshizawa, and T. Nakamura: Tetsu-to-Hagané, 1976, vol. 62, pp. 559-69.

    Google Scholar 

  5. Y. Shimomura, K. Nishikawa, S. Arino, T. Katayama, Y. Hida, and T. Isoyama: Tetsu-to-Hagané, 1976, vol. 62, pp. 547-58.

    CAS  Google Scholar 

  6. C. Wang, C. Ryman, and J. Dahl: Int J Greenh Gas Con, 2009, vol. 3, pp. 29-38.

    CAS  Google Scholar 

  7. X. Liang, Q. Lin, H. Muslemani, M. Lei, Q. Liu, J. Li, A. Wu, M. Liu, and F. Ascui: Energy Procedia, 2019, vol. 158, pp. 3715-22.

    Google Scholar 

  8. R.G.D. Pinto, A.S. Szklo, and R. Rathmann: Energ Policy, 2018, vol. 114, pp. 380-93.

    Google Scholar 

  9. T. Kuramochi: J Clean Prod, 2017, vol. 147, pp. 668-80.

    Google Scholar 

  10. T. Kuramochi: J Clean Prod, 2016, vol. 132, pp. 81-97.

    CAS  Google Scholar 

  11. H. Nogami, Y. Kashiwaya, and D. Yamada: Tetsu-to-Hagané, 2014, vol. 100, pp. 251-5.

    CAS  Google Scholar 

  12. J.A.D. Castro, C. Takano, and J. Yagi: Journal of Materials Research and Technology, 2017, vol. 6, pp. 258-70.

    Google Scholar 

  13. H. Nogami, Y. Kashiwaya, and D. Yamada: ISIJ International, 2012, vol. 52, pp. 1523-7.

    CAS  Google Scholar 

  14. L. Bergman, M. Larsson, J.O. Wikström, L.S. Ökvist, G. Zuo, and B. Jansson: Scanmet II, MEFOS, 2008, vol. 2, pp. 369-78.

    Google Scholar 

  15. G. Danloy, A. Berthelemot, M. Grant, J. Borlee, D. Sert, J. van der Stel, H. Jak, V. Dimastromatteo, M. Hallin, N. Eklund, N. Edberg, L. Sundqvist, B.E. Skoeld, R. Lin, A. Feiterna, B. Korthas, F. Muller, C. Feilmayr, and A. Habermann: Revue de Métallurgie–Int. J. Metall., 2009, vol. 106, pp. 1-8.

    CAS  Google Scholar 

  16. H. Yamaok and Y. Kame: Tetsu-to-Hagané, 1991, vol. 77, pp. 2099-106.

    Google Scholar 

  17. Y. Ohno, M. Matsuura, H. Mitsufuji, and T. Furukawa: ISIJ International, 1992, vol. 32, pp. 838-47.

    CAS  Google Scholar 

  18. Y. Qi, D. Yan, J. Gao, J. Zhang, and M. Li: Iron and Steel, 2011, vol. 46, pp. 6-8.

    CAS  Google Scholar 

  19. T. Miyashita and M. Ohtsuki: Tetsu-to-Hagané, 1971, vol. 57, pp. 2184-96.

    CAS  Google Scholar 

  20. H. Yamaok and Y. Kame: ISIJ International, 1992, vol. 32, pp. 709-15.

    Google Scholar 

  21. D.D. Zhou, K. Xu, G. Xu and X. Jiang: Ironmak. Steelmak., 2020, vol. 3, pp. 316-21.

    Google Scholar 

  22. E. Mousa, M. Lundgren, L. Sundqvist Ökvist, L.-E. From, A. Robles, S. Hällsten, B. Sundelin, H. Friberg, and A. El-Tawil: J. Sustain. Met., 2019, vol. 5, pp. 391-401.

    Google Scholar 

  23. Z.L. Zhang, J.L. Meng, L. Guo, and Z.C. Guo: Metall. Mater. Trans. B, 2016, vol. 47, pp. 467-84.

    Google Scholar 

  24. H. Yamaok and Y. Kame: ISIJ International, 1992, vol. 32, pp. 701-8.

    Google Scholar 

  25. P. Jin, Z. Jiang, C. Bao, Y. Lu, J. Zhang, and X. Zhang: Steel Res. Int., 2016, vol. 87, pp. 320-9.

    CAS  Google Scholar 

  26. Z. Li, S. Kuang, A. Yu, J. Gao, Y. Qi, D. Yan, Y. Li, and X. Mao: Metall. Mater. Trans. B, 2018, vol. 49, pp. 1995-2010.

    Google Scholar 

  27. W. Zhang, Z. Xue, J. Zhang, W. Wang, C. Cheng, and Z. Zou: J. Iron Steel Res.Int., 2017, vol. 24, pp. 778-86.

    Google Scholar 

  28. H. Helle, M. Helle, H. Saxén, and F. Pettersson: ISIJ international, 2010, vol. 50, pp. 931-8.

    CAS  Google Scholar 

  29. L. Liu, Z. Jiang, X. Zhang, Y. Lu, J. He, J. Wang, and X. Zhang: Energy, 2018, vol. 163, pp. 144-50.

    CAS  Google Scholar 

  30. X. Yu and Y. Shen: Metall. Mater. Trans. B, 2019, vol. 50, pp. 2238-50.

    Google Scholar 

  31. X. Yu and Y. Shen: Chem. Eng. Sci., 2019, vol. 199, pp. 50-63.

    CAS  Google Scholar 

  32. P.R. Austin, H. Nogami, and J.I. Yagi: ISIJ international, 1998, vol. 38, pp. 239-45.

    CAS  Google Scholar 

  33. M. Chu, H. Nogami, and J.I. Yagi: ISIJ International, 2004, vol. 44, pp. 2159-67.

    CAS  Google Scholar 

  34. Shen, Y., Guo, B., Chew, S., Austin, P., and Yu, A.: Metall. Mater. Trans. B, 2016, vol. 47, pp. 1052-62.

    Google Scholar 

  35. Hao, X., Shen, F., Du, G., Shen, Y., and Xie, Z.: Steel Res. Int., 2005, vol. 76, pp. 694-9.

    CAS  Google Scholar 

  36. Shen, Y., Yu, A., and Zulli, P.: Steel Res. Int., 2011, vol. 82, pp. 532-42.

    CAS  Google Scholar 

  37. Shen, Y.S., Guo, B.Y., Yu, A.B., and Zulli, P.: Fuel, 2009, vol. 88, pp. 255-63.

    CAS  Google Scholar 

  38. P. Austin, Ph.D. thesis, Tohokudai, 1997.

  39. M. Geerdes, R. Chaigneau, and I. Kurunov, Modern Blast Furnace Ironmaking: An Introduction, Ios Press, Netherlands, 2015, p. 16.

    Google Scholar 

  40. Z. Li and W. Jiang: Baosteel Tech. Res., 2016, vol. 5, pp. 70-3.

    Google Scholar 

  41. M.A. Tseitlin, S.E. Lazutkin, and G.M. Styopin: ISIJ International, 1994, vol. 34, pp. 570-3.

    CAS  Google Scholar 

  42. T. Ariyama and M. Sato: ISIJ International, 2006, vol. 46, pp. 1736-44.

    CAS  Google Scholar 

  43. M. Arens, E. Worrell, W. Eichhammer, A. Hasanbeigi, and Q. Zhang: J Clean Prod, 2017, vol. 163, pp. 84-98.

    CAS  Google Scholar 

  44. T. Ariyama, R. Murai, J. Ishii, and M. Sato: ISIJ International, 2005, vol. 45, pp. 1371-8.

    CAS  Google Scholar 

  45. X. Yu and Y. Shen: Powder Technol., 2020, vol. 361, pp. 124-35.

    CAS  Google Scholar 

  46. X. Yu and Y. Shen: Energy & Fuels, 2019, vol. 33, pp.11603-16.

    CAS  Google Scholar 

  47. D.S. Gupta, J.D. Litster, V.R. Rudolph, E.T. White, and A. Domanti: ISIJ International, 1996, vol. 36, pp. 32-9.

    CAS  Google Scholar 

  48. W.E. Ranz and W.R. Marshall: Chem. Eng. Prog., 1952, vol. 48, pp. 141-6.

    CAS  Google Scholar 

  49. E.R.G. Eckert and R.M. Drake, Heat and Mass Transfer, 2nd ed., McGrawHill, New York, 1959.

    Google Scholar 

  50. P.J. Mackey and N.A. Warner: Metal. Trans., 1972, vol. 3, pp. 1807-16.

    CAS  Google Scholar 

  51. X.F. Dong, A.B. Yu, S.J. Chew, and P. Zulli: Metall. Mater. Trans. B, 2010, vol. 41, pp. 330-49.

    CAS  Google Scholar 

  52. X. Yu and Y. Shen: Metall. Mater. Trans. B, 2018, vol. 49, pp. 2370-88.

    Google Scholar 

  53. Y. Omori, Blast Furnace Phenomena and Modelling, Elsevier Applied Science, London and New York, 1987, p.498.

    Google Scholar 

  54. I. Muchi: TRANS ISIJ., 1976, vol. 7, pp. 223-37.

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from the Australian Research Council (Grant No. LP160101100) and Coal Energy Australia and useful discussion with Baosteel. The first author acknowledges the financial support from the China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yansong Shen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted January 18, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, X., Shen, Y. Computational Fluid Dynamics Study of the Thermochemical Behaviors in an Ironmaking Blast Furnace with Oxygen Enrichment Operation. Metall Mater Trans B 51, 1760–1772 (2020). https://doi.org/10.1007/s11663-020-01878-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-020-01878-w

Navigation