Skip to main content
Log in

GC-NET for classification of glaucoma in the retinal fundus image

  • Special Issue Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

Glaucoma is the second-most dominant cause for irreversible blindness, resulting in damage to the optic nerve. Ophthalmologist diagnoses this disease using a retinal examination of the dilated pupil. Since the diagnosis is a manual and laborious procedure, an automated approach for faster diagnosis is desirable. Convolutional neural networks (CNN) could allow automation of the diagnosis procedure due to their self-learning capabilities. This paper presents a deep learning-based glaucoma classification network (GC-NET) for classifying a retinal image as glaucomatous or non-glaucomatous. The proposed GC-NET has been tested on RIM-One and Drishti datasets. Our experimental results showed that GC-NET achieves accuracy of 97.51%, sensitivity of 98.78% and specificity of 96.20% with 0.81 true positive (Tp), 0.03 false positive (Fp), 0.76 true negative (Tn) and 0.01 false negative (Fn) which outperforms state of the art. Thus, the proposed approach could be very useful for initial screening of glaucoma patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Foster, P.J., Buhrmann, R., Quigley, H.A., Johnson, G.J.: The definition and classification of glaucoma in prevalence surveys. Br. J. Ophthalmol. 86, 238–242 (2002)

    Article  Google Scholar 

  2. Saxena, R., Singh, D., Vashist, P.: Glaucoma: an emerging peril. Indian J. Community Med. 38, 135–137 (2013)

    Article  Google Scholar 

  3. Glaucoma Research foundation: Five Common Glaucoma Tests. https://www.glaucoma.org/glaucoma/diagnostic-tests.php. Accessed on 10 May 2019

  4. Yamada, S., Komatsu, K., Ema, T.: Inventors; Toshiba Corp, assignee. Computer-aided diagnosis system for medical use. United States patent US 5,235,510. 1993

  5. Abràmoff, M.D., Garvin, M.K., Sonka, M.: Retinal imaging and image analysis. IEEE Rev. Biomed. Eng. 3, 169–208 (2010)

    Article  Google Scholar 

  6. Gentle Dive into Math Behind Convolutional Neural Networks. https://towardsdatascience.com/gentle-dive-into-math-behind-convolutional-neural-networks-79a07dd44cf9. Accessed on 17 July 2019

  7. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Berlin (2006)

    MATH  Google Scholar 

  8. Acharya, U.R., Dua, S., Du, X., Chua, C.K.: Automated diagnosis of glaucoma using texture and higher order spectra features. IEEE Trans. Inf. Technol. Biomed. 15(3), 449–455 (2011)

    Article  Google Scholar 

  9. Noronha, K.P., Acharya, U.R., Nayak, K.P., Martis, R.J., Bhandary, S.V.: Automated classification of glaucoma stages using higher order cumulant features. Biomed. Signal Process. Control 1(10), 174–183 (2014)

    Article  Google Scholar 

  10. Acharya, U.R., Ng, E.Y., Eugene, L.W., Noronha, K.P., Min, L.C., Nayak, K.P., Bhandary, S.V.: Decision support system for the glaucoma using Gabor transformation. Biomed. Signal Process. Control 1(15), 18–26 (2015)

    Article  Google Scholar 

  11. Haleem, M.S., Han, L., Van Hemert, J., Fleming, A., Pasquale, L.R., Silva, P.S., Song, B.J., Aiello, L.P.: Regional image features model for automatic classification between normal and glaucoma in fundus and scanning laser ophthalmoscopy (SLO) images. J. Med. Syst. 40(6), 132 (2016)

    Article  Google Scholar 

  12. Claro, M., Santos, L., Silva, W., Araújo, F., Moura, N., Macedo, A.: Automatic glaucoma detection based on optic disc segmentation and texture feature extraction. CLEI Electron. J. 19(2), 5 (2016)

    Google Scholar 

  13. de Sousa, J.A., de Paiva, A.C., de Almeida, J.D., Silva, A.C., Junior, G.B., Gattass, M.: Texture based on geostatistic for glaucoma diagnosis from fundus eye image. Multimed. Tools Appl. 76(18), 19173–19190 (2017)

    Article  Google Scholar 

  14. Selvathi, D., Prakash, N.B., Gomathi, V., Hemalakshmi, G.R.: Fundus image classification using wavelet based features in detection of glaucoma. Biomed. Pharmacol. J. 11(2), 795–805 (2018)

    Article  Google Scholar 

  15. Prasad, G., Mishra, A.K., Singh, A.K.: In-depth analysis of wavelet transform based denoising scheme for smooth and textured images corrupted with Gaussian noise. In-depth. 6(7) (2014)

  16. Dua, S., Acharya, U.R., Chowriappa, P., Sree, S.V.: Wavelet-based energy features for glaucomatous image classification. IEEE Trans. Inf Technol. Biomed. 16(1), 80–87 (2012)

    Article  Google Scholar 

  17. Mookiah, M.R., Acharya, U.R., Lim, C.M., Petznick, A., Suri, J.S.: Data mining technique for automated diagnosis of glaucoma using higher order spectra and wavelet energy features. Knowl.-Based Syst. 1(33), 73–82 (2012)

    Article  Google Scholar 

  18. Singh, A., Dutta, M.K., ParthaSarathi, M., Uher, V., Burget, R.: Image processing based automatic diagnosis of glaucoma using wavelet features of segmented optic disc from fundus image. Comput. Methods Programs Biomed. 1(124), 108–120 (2016)

    Article  Google Scholar 

  19. Koh, J.E., Acharya, U.R., Hagiwara, Y., Raghavendra, U., Tan, J.H., Sree, S.V., Bhandary, S.V., Rao, A.K., Sivaprasad, S., Chua, K.C., Laude, A.: Diagnosis of retinal health in digital fundus images using continuous wavelet transform (CWT) and entropies. Comput. Biol. Med. 1(84), 89–97 (2017)

    Article  Google Scholar 

  20. Issac, A., Sarathi, M.P., Dutta, M.K.: An adaptive threshold based image processing technique for improved glaucoma detection and classification. Comput. Methods Programs Biomed. 122(2), 229–244 (2015)

    Article  Google Scholar 

  21. Salam, A.A., Khalil, T., Akram, M.U., Jameel, A., Basit, I.: Automated detection of glaucoma using structural and non structural features. Springerplus. 5(1), 1519 (2016)

    Article  Google Scholar 

  22. Chen, Y., Lin, Z., Zhao, X., Wang, G., Gu, Y.: Deep learning-based classification of hyperspectral data. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 7(6), 2094–2107 (2014)

    Article  Google Scholar 

  23. Benzebouchi, N.E., Azizi, N., Bouziane, S.E.: Glaucoma diagnosis using cooperative convolutional neural networks. In: Proceedings of ISER 88th International Conference 2017, pp. 1–6

  24. Al-Bander, B., Al-Nuaimy, W., Al-Taee, M.A., Zheng, Y.: Automated glaucoma diagnosis using deep learning approach. In: 2017 14th International Multi-Conference on Systems, Signals & Devices (SSD) 2017, pp. 207–210. IEEE

  25. Chai, Y., Liu, H., Xu, J.: Glaucoma diagnosis based on both hidden features and domain knowledge through deep learning models. Knowl.-Based Syst. 1(161), 147–156 (2018)

    Article  Google Scholar 

  26. Shibata, N., Tanito, M., Mitsuhashi, K., Fujino, Y., Matsuura, M., Murata, H., Asaoka, R.: Development of a deep residual learning algorithm to screen for glaucoma from fundus photography. Sci. Rep. 8(1), 14665 (2018)

    Article  Google Scholar 

  27. Raghavendra, U., Fujita, H., Bhandary, S.V., Gudigar, A., Tan, J.H., Acharya, U.R.: Deep convolution neural network for accurate diagnosis of glaucoma using digital fundus images. Inf. Sci. 1(441), 41–49 (2018)

    Article  MathSciNet  Google Scholar 

  28. Norouzifard, M., Nemati, A., Gholam, H.H., Klette, R., Nouri-Mahdavi, K., Yousefi, S.: Automated glaucoma diagnosis using deep and transfer learning: proposal of a system for clinical testing. In: 2018 International Conference on Image and Vision Computing New Zealand (IVCNZ) 2018, pp. 1–6. IEEE

  29. Lima, A., Maia, L.B., dos Santos, P.T., Junior, G.B., de Almeida, J.D., de Paiva, A.C.: Evolving Convolutional Neural Networks for Glaucoma Diagnosis. In: 18 Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2018) 2018, Vol. 18, No. 1/2018. SBC

  30. Kim, M., Janssens, O., Park, H.M., Zuallaert, J., Van Hoecke, S., De Neve, W.: Web Applicable Computer-aided Diagnosis of Glaucoma Using Deep Learning. arXiv:1812.02405. 2018

  31. Diaz-Pinto, A., Morales, S., Naranjo, V., Köhler, T., Mossi, J.M., Navea, A.: CNNs for automatic glaucoma assessment using fundus images: an extensive validation. Biomed. Eng. 18(1), 29 (2019)

    Google Scholar 

  32. Gómez-Valverde, J.J., Antón, A., Fatti, G., Liefers, B., Herranz, A., Santos, A., Sánchez, C.I., Ledesma-Carbayo, M.J.: Automatic glaucoma classification using color fundus images based on convolutional neural networks and transfer learning. Biomed. Opt. Express 10(2), 892–913 (2019)

    Article  Google Scholar 

  33. Simple Guide to the Versions of the Inception Network. https://towardsdatascience.com/a-simple-guide-to-the-versions-of-the-inception-network-7fc52b863202. Accessed on 5 July 2019

  34. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2016, pp. 770–778

  35. Chollet F.: Xception: Deep learning with depthwise separable convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2017, pp. 1251–1258

  36. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2017, pp. 4700–4708

  37. Hassan, M.: VGG16–Convolutional Network for Classification and Detection. Neurohive. Dostopno na. https://neurohive.io/en/popular-networks/vgg16. Accessed on 10 April 2019

  38. Juneja, M., Singh, S., Agarwal, N., Bali, S., Gupta, S., Thakur, N., Jindal, P.: Automated detection of Glaucoma using deep learning convolution network (G-net). Multimed. Tools Appl. 1–23 (2019)

  39. Zhang, Y.D., Govindaraj, V.V., Tang, C., Zhu, W., Sun, J.: High performance multiple sclerosis classification by data augmentation and AlexNet transfer learning model. J. Med. Imaging Health Inf. 9(9), 2012–2021 (2019)

    Article  Google Scholar 

  40. Zhang, Y.D., Dong, Z., Chen, X., Jia, W., Du, S., Muhammad, K., Wang, S.H.: Image based fruit category classification by 13-layer deep convolutional neural network and data augmentation. Multimed. Tools Appl. 78(3), 3613–3632 (2019)

    Article  Google Scholar 

  41. Elseid, A.A., Elmanna, M.E., Hamza, A.O.: Evaluation of spatial filtering techniques in retinal fundus images. Am J Artif. Intell. 2(2), 16 (2018)

    Google Scholar 

  42. Sivaswamy, J., Krishnadas, S.R., Joshi, G.D., Jain, M., Tabish, A.U.: Drishti-gs: retinal image dataset for optic nerve head (onh) segmentation. In: 2014 IEEE 11th international symposium on biomedical imaging (ISBI) 2014, pp. 53–56. IEEE

  43. Fumero, F., Alayón, S., Sanchez, J.L., Sigut, J., Gonzalez-Hernandez, M.: RIM-ONE: An open retinal image database for optic nerve evaluation. In: 2011 24th international symposium on computer-based medical systems (CBMS) 2011, pp. 1–6. IEEE

  44. Zhu, W., Zeng, N., Wang, N.: Sensitivity, specificity, accuracy, associated confidence interval and ROC analysis with practical SAS implementations. NESUG Proc. 14(19), 67 (2010)

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Ministry of Human Resource Development (MHRD), Govt. of India for funding this project (17-11/2015-PN-1) under Design Innovation Centre (DIC) sub-theme Medical Devices and Restorative Technologies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prashant Jindal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Juneja, M., Thakur, N., Thakur, S. et al. GC-NET for classification of glaucoma in the retinal fundus image. Machine Vision and Applications 31, 38 (2020). https://doi.org/10.1007/s00138-020-01091-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00138-020-01091-4

Keywords

Navigation