Skip to main content
Log in

Optimization of anodizing process of tantalum for Ta2O5-based capacitors

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Anodic oxides were grown to 50 V on Ta in several organic ions containing anodizing baths. Their properties were compared with anodic Ta oxide film grown to the same formation voltage in 0.1 M NaOH. Anodizing process carried out in sodium citrate led to the growth of the anodic oxide with the best blocking properties whilst, when Ta is anodized in sodium adipate, a significant part of the circulated charge is wasted in side reactions, such as oxygen evolution. Photoelectrochemical measurements showed the presence of optical transitions at energy lower than the band gap for the anodic films grown in citrate and tartrate electrolytes, attributed to localized electronic states located close to the valence band mobility edge of the films generated by anions incorporation into the oxide. Differential capacitance measurements proved an increase by 17% in capacitance value for the oxide grown in citrate-containing solution with respect to that grown in NaOH electrolyte. A sketch of the energetic of the metal/oxide interface is provided.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Freeman Y (2018) Tantalum and niobium-based capacitors. Springer International Publishing, Cham

    Google Scholar 

  2. Kundozerova TV, Stefanovich GB, Grishin AM (2012) Binary anodic oxides for memristor-type nonvolatile memory. Phys Status Solidi 9:1699–1701

    CAS  Google Scholar 

  3. Diamanti MV, Pisoni R, Cologni A, Brenna A, Corinto F, Pedeferri MP (2016) Anodic oxidation as a means to produce memristive films. J Appl Biomater Funct Mater 14(3):e290–e295

    CAS  PubMed  Google Scholar 

  4. Zaffora A, Cho D-Y, Lee K-S, Di Quarto F, Waser R, Santamaria M, Valov I (2017) Electrochemical tantalum oxide for resistive switching memories. Adv Mater 29(43):1703357

    Google Scholar 

  5. Zaffora A, Di Quarto F, Habazaki H, Valov I, Santamaria M (2019) Electrochemically prepared oxides for resistive switching memories. Faraday Discuss 213(0):165–181

    CAS  PubMed  Google Scholar 

  6. Pringle JPS (1973) Migration of oxygen during the anodic oxidation of tantalum. J Electrochem Soc 120(10):1391–1400

    Google Scholar 

  7. Lu Q, Skeldon P, Thompson GE, Masheder D, Habazaki H, Shimizu K (2004) Transport numbers of metal and oxygen species in anodic tantala. Corros Sci 46(11):2817–2824

    CAS  Google Scholar 

  8. Shimizu K, Kobayashi K, Thompson GE, Skeldon P, Wood GC (1996) Anodic oxide films on tantalum: incorporation and mobilities of electrolyte-derived species. Philos Mag B 73:461–485

    CAS  Google Scholar 

  9. Kim Y-H, Uosaki K (2013) Preparation of tantalum anodic oxide film in citric acid solution - evidence and effects of citrate anion incorporation. J Electrochem Sci Technol 4(4):163–170

    CAS  Google Scholar 

  10. Sharp DJ, Panitz JKG, Merrill RM, Haaland DM (1984) The incorporation of electrolyte byproducts into barrier anodic Al2O3 coatings. Thin Solid Films 111(3):227–234

    CAS  Google Scholar 

  11. Di Quarto F, Piazza S, Splendore A, Sunseri C (1992) More insights on the photocurrent behavior of the aluminum/aluminum oxide/electrolyte junction. In: MacDougall BR, Alwitt RS, Ramanarayanan TA (eds) Proceedings of the symposium on oxide films on metals and alloys. Electrochemical Society Inc., Pennington, pp 311–325

    Google Scholar 

  12. Shimizu K, Habazaki H, Skeldon P, Thompson GE, Wood GC (2001) Migration of oxalate ions in anodic alumina. Electrochim Acta 46(28):4379–4382

    CAS  Google Scholar 

  13. Sato Y, Asoh H, Ono S (2013) Effects of electrolyte species and their combination on film structures and dielectric properties of crystalline anodic alumina films formed by two-step anodization. Mater Trans 54(10):1993–1999

    CAS  Google Scholar 

  14. Ono S, Kuramochi K, Asoh H (2009) Effects of electrolyte pH and temperature on dielectric properties of anodic oxide films formed on niobium. Corros Sci 51(7):1513–1518

    CAS  Google Scholar 

  15. Di Franco F, Zaffora A, Santamaria M (2018) Band gap narrowing and dielectric constant enhancement of (NbxTa(1-x))2O5 by electrochemical nitrogen doping. Electrochim Acta 265:326–335

    Google Scholar 

  16. Zaffora A, Di Quarto F, Kura C, Sato Y, Aoki Y, Habazaki H, Santamaria M (2018) Electrochemical oxidation of Hf-Nb alloys as a valuable route to prepare mixed oxides of tailored dielectric properties. Adv Electron Mater 4(5):1800006

    Google Scholar 

  17. Di Franco F, Bocchetta P, Santamaria M, Di Quarto F (2010) Light induced electropolymerization of poly(3,4-ethylenedioxythiophene) on niobium oxide. Electrochim Acta 56(2):737–744

    Google Scholar 

  18. Pourbaix M (1966) Atlas of electrochemical equilibria in aqueous solutions. Pergamon Press, Oxford

    Google Scholar 

  19. Sieber I, Kannan B, Schmuki P (2005) Self-assembled porous tantalum oxide prepared in H2SO4/HF electrolytes. Electrochem Solid-State Lett 8(3):J10–J12

    CAS  Google Scholar 

  20. Sieber I, Hildebrand H, Friedrich A, Schmuki P (2006) Initiation of tantalum oxide pores grown on tantalum by potentiodynamic anodic oxidation. J Electroceram 16(1):35–39

    CAS  Google Scholar 

  21. Verma N, Singh KC, Marí B, Mollar M, Jindal J (2016) Anodic oxide films on niobium and tantalum in different aqueous electrolytes and their impedance characteristics. Acta Phys Pol A 129(3):297–303

    Google Scholar 

  22. Fialho L, Almeida Alves CF, Marques LS, Carvalho S (2020) Development of stacked porous tantalum oxide layers by anodization. Appl Surf Sci 511:145542

    CAS  Google Scholar 

  23. Almeida Alves CF, Calderon VS, Ferreira PJ, Marques L, Carvalho S (2020) Passivation and dissolution mechanisms in ordered anodic tantalum oxide nanostructures. Appl Surf Sci 513:145575

    CAS  Google Scholar 

  24. Habazaki H, Shimizu K, Skeldon P, Thompson GE, Wood GC (1997) Inter-relationships between ionic transport and composition in amorphous anodic oxides. Proc R Soc A Math Phys Eng Sci 453(1963):1593–1609

    CAS  Google Scholar 

  25. Li YM, Young L (1998) Anodic oxide films on tantalum: anomalies in steady-state and stepped field ionic conduction and incorporation of electrolyte species. Proc R Soc A Math Phys Eng Sci 454:239–246

    CAS  Google Scholar 

  26. Di Franco F, Santamaria M, Di Quarto F, Tsuji E, Habazaki H (2012) The influence of nitrogen incorporation on the optical properties of anodic Ta2O5. Electrochim Acta 59:382–386

    Google Scholar 

  27. Zaffora A, Santamaria M, Di Franco F, Habazaki H, Di Quarto F (2016) Photoelectrochemical evidence of nitrogen incorporation during anodizing sputtering-deposited Al-Ta alloys. Phys Chem Chem Phys 18(1):351–360

    CAS  PubMed  Google Scholar 

  28. Di Quarto F, Gentile C, Piazza S, Sunseri C (1993) A photoelectrochemical study on anodic tantalum oxide films. Corros Sci 35(1-4):801–808

    Google Scholar 

  29. Guo Y, Robertson J (2014) Oxygen vacancy defects in Ta2O5 showing long-range atomic re-arrangements. Appl Phys Lett 104:3–8

    Google Scholar 

  30. Di Franco F, Zampardi G, Santamaria M, Di Quarto F, Habazaki H (2012) Characterization of the solid state properties of anodic oxides on magnetron sputtered ta, Nb and Ta-Nb alloys. J Electrochem Soc 159:C33–C39

    Google Scholar 

  31. Zaffora A, Di Franco F, Santamaria M, Habazaki H, Di Quarto F (2015) The influence of composition on band gap and dielectric constant of anodic Al-Ta mixed oxides. Electrochim Acta 180:666–678

    CAS  Google Scholar 

  32. Tauc J (1974) Amorphous and liquid semiconductors. Plenum Press, London

    Google Scholar 

  33. Mott NF, Davis EA (1979) Electronic processes in non-crystalline materials, 2nd edn. Clarendon Press, Oxford

    Google Scholar 

  34. Vermilyea DA (1955) The crystallization of anodic tantalum oxide films in the presence of a strong electric field. J Electrochem Soc 102(5):207

    CAS  Google Scholar 

  35. Yahalom J, Zahavi J (1970) Electrolytic breakdown crystallization of anodic oxide films on Al, Ta and Ti. Electrochim Acta 15(9):1429–1435

    CAS  Google Scholar 

  36. Leach JSL, Pearson BR (1988) Crystallization in anodic oxide films. Corros Sci 28(1):43–56

    CAS  Google Scholar 

  37. Jackson NF (1973) Field crystallization of anodic films on tantalum. J Appl Electrochem 3(2):91–98

    Google Scholar 

  38. Yang L, Viste M, Hossick-Schott J, Sheldon BW (2012) Internal stress evolution during field-induced crystallization of anodic tantalum oxide. Electrochim Acta 81:90–97

    CAS  Google Scholar 

  39. Miraghaei S, Santamaria M, Di Quarto F (2014) Red shift in the light absorption threshold of anodic TiO2 films induced by nitrogen incorporation. Electrochim Acta 134:150–158

    CAS  Google Scholar 

  40. Zaffora A, Santamaria M, Di Franco F, Habazaki H, Di Quarto F (2016) Photoelectrochemical evidence of inhomogeneous composition at nm length scale of anodic films on valve metals alloys. Electrochim Acta 201:333–339

    CAS  Google Scholar 

  41. Di Quarto F, Di Franco F, Monarca C, Santamaria M, Habazaki H (2013) Photoelectrochemical characterization of amorphous anodic films on Ti–6at.%Si. Electrochim Acta 110:517–525

    Google Scholar 

  42. Crandall RS (1983) Modeling of thin film solar cells: uniform field approximation. J Appl Phys 54(12):7176–7186

    CAS  Google Scholar 

  43. Zaffora A, Di Franco F, Di Quarto F, Macaluso R, Mosca M, Habazaki H, Santamaria M (2017) The effect of Nb incorporation on the electronic properties of anodic HfO2. ECS J Solid State Sci Technol 6(4):N25–N31

    CAS  Google Scholar 

  44. Gurevich YY, Pleskov YV, Rotenberg ZA (1980) Photoelectrochemistry. Plenum Press, New York

    Google Scholar 

  45. Vermilyea DA (1953) The kinetics of formation and structure of anodic oxide films on tantalum. Acta Metall 1(3):282–294

    CAS  Google Scholar 

  46. Young L (1961) Anodic oxide films. Academic Press, London

    Google Scholar 

  47. Diggle JW (1972) Oxides and oxide films, vol 1. Marcel Dekker, New York

    Google Scholar 

  48. Lohrengel MM (1993) Thin anodic oxide layers on aluminium and other valve metals: high field regime. Mater Sci Eng R Rep 11(6):243–294

    Google Scholar 

  49. Zaffora A, Tranchida G, Di Franco F, Di Quarto F, Santamaria M (2016) Physico-chemical characterization of anodic oxides on Hf as a function of the anodizing conditions. J Electrochem Soc 163(9):C563–C570

    CAS  Google Scholar 

  50. Habazaki H, Fushimi K, Shimizu K, Skeldon P, Thompson GE (2007) Fast migration of fluoride ions in growing anodic titanium oxide. Electrochem Commun 9(5):1222–1227

    CAS  Google Scholar 

  51. Fogazza M, Santamaria M, Di Quarto F, Garcia-Vergara SJ, Molchan I, Skeldon P, Thompson GE, Habazaki H (2009) Formation of anodic films on sputtering-deposited Al–Hf alloys. Electrochim Acta 54(3):1070–1075

    CAS  Google Scholar 

  52. Kerrec O, Devilliers D, Groult H, Chemla M (1995) Dielectric properties of anodic oxide layers on tantalum. Electrochim Acta 40(6):719–724

    CAS  Google Scholar 

  53. Lu Q, Mato S, Skeldon P, Thompson GE, Masheder D (2003) Dielectric properties of anodic films formed on sputtering-deposited tantalum in phosphoric acid solution. Thin Solid Films 429(1-2):238–242

    CAS  Google Scholar 

  54. Young L, Kulpa A (2007) Dielectric properties and ionic conductivity of anodic oxide films on tantalum. J Electrochem Soc 154(2):G38–G43

    CAS  Google Scholar 

  55. Lide DR (2010) CRC handbook of chemistry and physics, 90th edn. CRC Press/Taylor and Francis, Boca Raton

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Di Franco.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 58 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaffora, A., Di Franco, F., Di Quarto, F. et al. Optimization of anodizing process of tantalum for Ta2O5-based capacitors. J Solid State Electrochem 24, 2953–2962 (2020). https://doi.org/10.1007/s10008-020-04704-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04704-0

Keywords

Navigation