Skip to main content

Advertisement

Log in

Toosendanin relatives, trypanocidal principles from Meliae Cortex

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

Africa Trypanosomiasis remains a serious health problem, but the approved drugs for this disease are so few that novel trypanocidal compounds are demanded. In search for trypanocidal principles from medicinal plants, we found MeOH extracts of Meliae Cortex with potent activity through the screening from about 300 kinds of methanolic extract. By bioassay-guided fractionation from this extract through the liquid–liquid partition and subsequent chromatographic technique using silica gel and ODS, finally we disclosed toosendanin (1) and its relatives as active principles. These active congeners showed not only potent trypanocidal activity but also little cytotoxicity to display the excellent selective index. Taking the isolated amount as well as trypanocidal activity into consideration, 1 was disclosed to be the responsible active principle in Meliae Cortex. Additionally, the derivatives of 1 were chemically prepared from 1 and bioactivity of them were also evaluated. Through the comparison with their trypanocidal activity among the isolated relatives and the synthesized derivatives of 1, the epoxide moiety was revealed to be essential for their potent trypanocidal activity. Furthermore, 3-O-acetyl group and 7-hydroxyl group were presumed to be important functional groups and introduction of methylpropionyl group into hemiacetal hydroxy moiety was clarified to enhance their typanocidal activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Scheme 1

Similar content being viewed by others

References

  1. Barrett MP (1999) The fall and rise of sleeping sickness. Lancet 353:1113–1114. https://doi.org/10.1016/S0140-6736(98)00416-4

    Article  CAS  PubMed  Google Scholar 

  2. World Health Organization. "Trypanosomiasis, human African (sleeping sickness)" updated on 17 February, 2020. https://www.who.int/news-room/fact-sheets/detail/trypanosomiasis-human-african-(sleeping-sickness) Accessed 20 March, 2020.

  3. Chretien J-P, Smoak BL (2005) African trypanosomiasis: Changing epidemiology and consequences. Curr Infect Dis Rep 7:54–60. https://doi.org/10.1007/s11908-005-0024-y

    Article  PubMed  Google Scholar 

  4. 19th WHO Model List of Essential Medicines (April 2015) page18.

  5. Deeks ED (2019) Fexinidazole: first global approval. Drugs 79:215–220. https://doi.org/10.1007/s40265-019-1051-6

    Article  CAS  PubMed  Google Scholar 

  6. Bern C, Montgomery SP, Herwaldt BL, Rassi A, Marin-Neto JA, Dantas RO, Maguire JH, Acquatella H, Morillo C, Kirchhoff LV, Gilman RH, Reyes PA, Salvatella R, Moore AC (2007) Evaluation and treatment of Chagas disease in the United States. JAMA 298:2171–2181. https://doi.org/10.1001/jama.298.18.2171

    Article  CAS  PubMed  Google Scholar 

  7. DNAi "Fexinidazole to treat sleeping sickness" updated in January, 2019. https://www.dndi.org/achievements/fexinidazole/ Accessed 20 March, 2020.

  8. Kubata BK, Nagamune K, Murakami N, Merkel P, Kabututu Z, Martin SK, Kalulu TM, Mustakul H, Yoshida M, Ohnishi-Kameyama M, Kinoshita T, Duszenko M, Urade Y (2005) Kola acuminata proanthocyanidins: a class of anti-trypanosomal compounds effective against Trypanosoma brucei. Int J Parasitol 35:91–103. https://doi.org/10.1016/j.ijpara.2004.10.019

    Article  CAS  PubMed  Google Scholar 

  9. Ochi M, Kotsuki H, Ishida H, Tokoroyama T (1978) Limonoids from Melia azedarach LINN. var japonica MAKINO. II. The natural hydroxyl precursor of sendanin. Chem Lett. https://doi.org/10.1246/cl.1978.99

    Article  Google Scholar 

  10. Zhou J-B, Minami Y, Yagi F, Tadera K, Nakatani M (1997) Antifeeding Limonoids from Melia toosendan. Heterocylces 45:1781–1786. https://doi.org/10.3987/COM-97-7831

    Article  CAS  Google Scholar 

  11. Zhang T, Li J, Yin F, Lin B, Wang Z, Xu J, Wang H, Zuo D, Wang G, Hua Y, Cai Z (2017) Toosendanin demonstrates promising antitumor efficacy in osteosarcoma by targeting STAT3. Oncogene 36:6627–6639. https://doi.org/10.1038/onc.2017.270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang S, Cao L, Wang ZR, Li Z, Ma J (2019) Anti-cancer effect of toosendanin and its underlying mechanisms. J Asian Nat Prod Res 21:270–283. https://doi.org/10.1080/10286020.2018.1451416

    Article  CAS  PubMed  Google Scholar 

  13. Tang MZ, Wang ZF, Shi YL (2003) Toosendanin induces outgrowth of neuronal processes and apoptosis in PC12 cells. Neurosci Res 45:225–231. https://doi.org/10.1016/s0168-102(02)00225-0

    Article  CAS  PubMed  Google Scholar 

  14. Zhang B, Wang ZF, Tang MZ, Shi YL (2005) Growth inhibition and apoptosis-induced effect on human cancer cells of toosendanin, a triterpenoid derivative from Chinese traditional medicine. Invest New Drugs 23:547–553. https://doi.org/10.1007/s10637-005-0909-5

    Article  CAS  PubMed  Google Scholar 

  15. He Y, Wang J, Liu X, Zhang L, Yi G, Li C, He X, Wang P, Jiang H (2010) Toosendanin inhibits hepatocellular carcinoma cells by inducing mitochondria-dependent apoptosis. Planta Med 76:1447–1453. https://doi.org/10.1055/s-0029-1240902

    Article  CAS  PubMed  Google Scholar 

  16. Ju J, Qi Z, Cai X, Cao P, Liu N, Wang S, Chen Y (2013) Toosendanin induces apoptosis through suppression of JNK signaling pathway in HL-60. Toxicol in Vitro 27:232–238. https://doi.org/10.1016/j.tiv.2012.09.013

    Article  CAS  PubMed  Google Scholar 

  17. Wang G, Feng CC, Chu SJ, Zhang R, Lu YM, Zhu JS, Zhang J (2015) Toosendanin inhibits growth and induces apoptosis in colorectal cancer cells through suppression of AKT/GSK-3β/β-catenin pathway. Int J Oncol 47:1767–1774. https://doi.org/10.3892/ijo.2015.3157

    Article  CAS  PubMed  Google Scholar 

  18. Zhou Q, Wu X, Wen C, Wang H, Wang H, Liu H, Peng J (2018) Toosendanin induces caspase-dependent apoptosis through the p38 MAPK pathway in human gastric cancer cells. Biochem Biophys Res Commun 505:261–266. https://doi.org/10.1016/j.bbrc.2018.09.093

    Article  CAS  PubMed  Google Scholar 

  19. Gao T, Xie A, Liu X, Zhan H, Zeng J, Dai M, Zhang B (2019) Toosendanin induces the apoptosis of human Ewing's sarcoma cells via the mitochondrial apoptosis pathway. Mol Med Rep 20:135–140. https://doi.org/10.3892/mmr.2019.10224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang H, Wen C, Chen S, Wang F, He L, Li W, Zhou Q, Yu WK, Huang L, Chen J, Liu R, Li W, Yang X, Liu H (2020) Toosendanin- iduced apoptosis in colorectal cancer cells is associated with the k-opioid receptor/b-catenin signaling axis. Biochem Pharmacol 177:114014. https://doi.org/10.1016/j.bcp.2020.114014

    Article  CAS  PubMed  Google Scholar 

  21. Jimenez A, Villarreal C, Toscano RA, Cook M, Arnason JT, Bye R, Mata R (1998) Limonoids from Swietenia humilins and Guarea grandiflora (Meliaceae). Phytochemistry 49:1981–1988

    Article  CAS  Google Scholar 

  22. Carpinella MC, Defago MT, Valladares G, Palacios SM (2003) Antifeedant and insecticide properties of a limonoid from Melia azedarach (Meliaceae) with potential use for pest management. J Agri Food Chem 51:369–374. https://doi.org/10.1021/jf025811w

    Article  CAS  Google Scholar 

  23. Shih YL, Hsu K (1983) Anti-botulismic effect of toosendanin and its facilitatory action on miniature end-plate potentials. Jpn J Physiol 33:677–680. https://doi.org/10.2170/jjphysiol.33.677

    Article  CAS  PubMed  Google Scholar 

  24. Zou J, Miao WY, Ding FH, Meng JY, Ye HJ, Jia GR, He XY, Sun GZ, Li PZ (1985) The effect of toosendanin on monkey botulism. J Tradit Chin Med 5:29–30

    CAS  PubMed  Google Scholar 

  25. Shi YL, Wang ZF (2004) Cure of experimental botulism and antibotulismic effect of toosendanin. Act Pharmacol Sin 25:839–848

    CAS  Google Scholar 

  26. Li MF, Shi YL (2006) Toosendanin interferes with pore formation of botulinum toxin type A in PC12 cell membrane. Act Pharmacol Sin 27:66–70. https://doi.org/10.1111/j.1745-7254.2006.00236.x

    Article  CAS  Google Scholar 

  27. Nakai Y, Pellett S, Tepp WH, Johnson EA, Janda KD (2010) Toosendanin: synthesis of the AB-ring and investigations of its anti-botulinum properties (Part II). Bioorg Med Chem 18:1280–1287. https://doi.org/10.1016/j.mbc.2009.12.030

    Article  CAS  PubMed  Google Scholar 

  28. Fang XF, Cui ZJ (2011) The anti-botulism triterpenoid toosendanin elicits calcium increase and exocytosis in rat sensory neurons. Cell Mol Neurobiol 31:1151–1162. https://doi.org/10.1007/s10571-011-9716-z

    Article  CAS  PubMed  Google Scholar 

  29. Pei Z, Fu W, Wang G (2017) A natual product toosendanin inhibits epithelial-mesenchymal transition and tumor growth in pancreatic cancer via deactivating Akt/mTOR signaling. Biochem Biophys Res Commun 493:455–460. https://doi.org/10.1016/j.bbrc.2017.08.170

    Article  CAS  PubMed  Google Scholar 

  30. Luo W, Liu X, Sun W, Lu JJ, Wang Y, Chen X (2018) Toosendanin, a natural product, inhibited TGF-β1-induced epithelial-mesenchymal transition through ERK/Snail pathway. Phytother Res 32:2009–2020. https://doi.org/10.1002/ptr.6132

    Article  CAS  PubMed  Google Scholar 

  31. Chen TX, Cheng XY, Wang Y, Yin W (2018) Toosendanin inhibits adipogenesis by activating Wnt/b-catenin signaling. Sci Rep 8:4626. https://doi.org/10.1038/s41598-018-22873-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fan H, Chen W, Zhu J, Zhang J, Peng S (2019) Toosendanin alleviates dextran sulfate sodium-induced colitis by inhibiting M1 macrophage polarization and regulating NLRP3 inflammasome and Nrf2/HO-1 signaling. Int Immunopharmacol 76:105909. https://doi.org/10.1016/j.intimp.2019.105909

    Article  CAS  PubMed  Google Scholar 

  33. Jin YH, Kwon S, Choi JG, Cho WK, Lee B, Ma JY (2019) Toosndanin from Melia Fructus suppresses influenza A virus infection by altering nuclear localization of viral polymerase PA protein. Front Pharmacol 10:1025. https://doi.org/10.3389/fphar.2019.01025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kai W, Yating S, Lin M, Kaiyong Y, Baojin H, Wu Y, Fangzhou Y, Yan C (2018) Natural product toosendanin reverses the resistance of human breast cancer cells to adriamycin as a novel PI3K inhibitor. Biochem Pharmacol 152:153–164. https://doi.org/10.1016/jbcp.2018.03.022

    Article  CAS  PubMed  Google Scholar 

  35. Su Z-S, Yang S-P, Zhang S, Dong L, Yue J-M (2011) Miliarachins A-K: eleven limonoids from twigs and leaves of Melia azedarach. Helv Chim Acta 94:1515–1526. https://doi.org/10.1002/hlca.201000444

    Article  CAS  Google Scholar 

  36. Huang RC, Okamura H, Iwagawa T, Nakatani M (1994) The structure of azedarachins. limonoid antifeedants from Chinese Melia azedarach LINN. Bull Chem Soc Jpn 67:2468–2472. https://doi.org/10.1246/bcsj.67.2468

    Article  CAS  Google Scholar 

  37. Nakatani M, Huang RC, Okamura H, Naoki H, Iwagawa T (1994) Limonoid antifeedants from Chinese Melia azedarach. Phytochemistry 36:39–41. https://doi.org/10.1016/S0031-9422(00)97008-0

    Article  CAS  Google Scholar 

  38. Itokawa H, Qiao Z-S, Hirobe C, Takeya K (1995) Cytotoxic limonoids and tetranortriterpenoids from Melia azedarach. Chem Pharm Bull 43:1171–1175. https://doi.org/10.1248/cpb.43.1171

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Research funds from San-Ei Gen F. F. I. Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoru Tamura.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. S1 (TIF 206 kb)

Supplementary Table S1 (DOCX 76 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mifundu, M.N., Murakami, N., Kawano, T. et al. Toosendanin relatives, trypanocidal principles from Meliae Cortex. J Nat Med 74, 702–709 (2020). https://doi.org/10.1007/s11418-020-01422-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-020-01422-9

Keywords

Navigation