Skip to main content
Log in

Cyclic iterated function systems

  • Published:
Journal of Fixed Point Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we consider some generalization of the Banach contraction principle, namely cyclic contraction and cyclic \(\varphi \)-contraction. For the application to the fractal, we develop new iterated function systems (IFS) consisting of cyclic contractions and cyclic \(\varphi \)-contractions. Further, we discuss about some special properties of the Hutchinson operator associated with the cyclic (c)-comparison IFS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Banach, S.: Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fundam. Math. 3, 133–181 (1922)

    Article  Google Scholar 

  2. Banakh, T., Nowak, M.: A 1-dimensional, Peano continuum which is not an IFS attractor. Proc. AMS. 141(3), 931–935 (2013)

    Article  MathSciNet  Google Scholar 

  3. Banakh, T., Tuncali, M.: Controlled Hahn–Mazurkiewicz Theorem and some new dimension functions of Peano continua. Topol. Appl. 154(7), 1286–1297 (2007)

    Article  MathSciNet  Google Scholar 

  4. Barnsley, M.F.: Fractals Everywhere. Academic Press, Boston (1988)

    MATH  Google Scholar 

  5. Berinde, V.: Contractii Generalizate si Aplicatii, vol. 22. Editura Cub Press, Baia Mare (1997)

    MATH  Google Scholar 

  6. Boyd, D.W., Wong, J.S.W.: On nonlinear contractions. Proc. Am. Math. Soc. 20, 458–464 (1969)

    Article  MathSciNet  Google Scholar 

  7. Chand, A.K.B., Navascués, M.A.: Natural bicubic spline fractal interpolation. J. Nonlinear Anal. 69, 3679–3691 (2008)

    Article  MathSciNet  Google Scholar 

  8. Chand, A.K.B., Vijender, N.: A new class of fractal interpolation surfaces based on functional values. Fractals 24(1), 1650007 (2016)

    Article  MathSciNet  Google Scholar 

  9. Chand, A.K.B., Vijender, N.: Positive blending Hermite rational cubic spline fractal interpolation surfaces. Calcolo 52(1), 1–24 (2015)

    Article  MathSciNet  Google Scholar 

  10. Chand, A.K.B., Vijender, N., Navascués, M.A.: Shape preservation of scientific data through rational fractal splines. Calcolo 51, 329–362 (2014)

    Article  MathSciNet  Google Scholar 

  11. Chand, A.K.B., Viswanathan, P.: A constructive approach to cubic Hermite fractal interpolation function and its constrained aspects. BIT Numer. Math. 53, 841–865 (2013)

    Article  MathSciNet  Google Scholar 

  12. Edelstein, M.: On fixed and periodic points under contractive mappings. J. Lond. Math. Soc. 37, 74–79 (1962)

    Article  MathSciNet  Google Scholar 

  13. Fernau, H.: Infinite iterated function systems. Math. Nachr. 170, 79–91 (1994)

    Article  MathSciNet  Google Scholar 

  14. Gwóźdź-Lukowska, G., Jachymski, J.: The Hutchinson-Barnsley theory for infinite iterated function systems. Bull. Aust. Math. Soc. 72(3), 441–454 (2005)

    Article  MathSciNet  Google Scholar 

  15. Hata, M.: On some properties of set-dynamical systems. Proc. Jpn Acad. Ser. A 61, 99–102 (1985)

    Article  MathSciNet  Google Scholar 

  16. Hutchinson, J.: Fractals and self-similarity. Indiana Univ. Math. J. 30, 713–747 (1981)

    Article  MathSciNet  Google Scholar 

  17. Jachymski, J.: Around Browder’s fixed point theorem. J. Fixed Point Theory Appl. 5, 47–61 (2009)

    Article  MathSciNet  Google Scholar 

  18. Kirk, W.A., Srinivasan, P.S., Veeramani, P.: Fixed points for mappings satisfying cyclical contractive conditions. Fixed Point Theory 4, 79–89 (2003)

    MathSciNet  MATH  Google Scholar 

  19. Kirk, W.A.: Handbook of Metric Fixed Point Theory. Kluwer Academic Publisher, Dordrecht (2001)

    Book  Google Scholar 

  20. Klimek and Kosek: Generalized iterated function systems, multifunctions and Cantor sets. Ann. Polon. Math. 96(1), 25–41 (2009)

    Article  MathSciNet  Google Scholar 

  21. Leśniak, K.: Infinite iterated function systems: a multivalued approach. Bull. Pol. Acad. Sci. Math. 52(1), 1–8 (2004)

    Article  MathSciNet  Google Scholar 

  22. Mandelbrot, B.B.: The Fractal Geometry of Nature. Freeman, Newyork (1982)

    MATH  Google Scholar 

  23. Mauldin, R.D., Urbański, M.: Dimensions and measure in infinite iterated function systems. Proc. Lond. Math. Soc. s3–73(1), 105–154 (1996)

    Article  MathSciNet  Google Scholar 

  24. Matkowski, J.: Integrable solutions of functional equations, 127 (Dissertationes Math.) (Rozprawy Mat. Warszawa) (1975)

  25. Mihail, A., Miculescu, R.: Generalized IFSs on noncompact spaces. Fixed Point Theory Appl. 2010, 20 (2010)

    Article  MathSciNet  Google Scholar 

  26. Navascués, M.A.: Fractal polynomial interpolation. Z. Anal. Anwend. 25(2), 401–418 (2005)

    Article  MathSciNet  Google Scholar 

  27. Navascués, M.A., Chand, A.K.B.: Fundamental sets of fractal functions. Acta Appl. Math. 100, 247–261 (2008)

    Article  MathSciNet  Google Scholar 

  28. Nowak, M., Szarek, T.: The shark teeth is a topological IFS-attractor. Sib. Math. J. 55(2), 296–300 (2014)

    Article  MathSciNet  Google Scholar 

  29. Rhoades, B.E.: A comparison of various definitions of contractive mappings. Trans. Am. Math. Soc. 226, 257–290 (1977)

    Article  MathSciNet  Google Scholar 

  30. Ri, S.: A new fixed point theorem in the fractal space. Indag. Math. 27(1), 85–93 (2016)

    Article  MathSciNet  Google Scholar 

  31. Rus, I.A.: Picard operators and applications. Sci. Math. Jpn. 58, 191–219 (2003)

    MathSciNet  MATH  Google Scholar 

  32. Secelean, N.A.: Countable iterated function systems. Far East J. Dyn. Syst. 3(2), 149–167 (2001)

    MathSciNet  MATH  Google Scholar 

  33. Secelean, N.A.: The existence of the attractor of countable iterated function systems. Mediterr. J. Math. 9, 61–79 (2012)

    Article  MathSciNet  Google Scholar 

  34. Secelean, N.A.: Iterated function systems consisting of \(F\)-contractions. Fixed Point Theory Appl. 277, 13 (2013)

    MathSciNet  MATH  Google Scholar 

  35. Vrscay, E.R.: Iterated function systems: theory, applications and the inverse problem. In: Proceedings of the NATO Advanced Study Institute on Fractal Geometry, Montreal, July 1989, Kluwer Academic Publishers (1990)

Download references

Acknowledgements

The authors are grateful to Dr. P. Veeramani for his constructive suggestions to use cyclic contraction in iterated function systems. The second author is thankful to the University of Zaragoza for a short visit during July, 2019 for this joint work. The authors are grateful to the anonymous reviewers for their valuable suggestions to improve the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. B. Chand.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The second author acknowledges the financial support received from the project MTR/2017/000574-MATRICS of the Science and Engineering Research Board (SERB), Government of India.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pasupathi, R., Chand, A.K.B. & Navascués, M.A. Cyclic iterated function systems. J. Fixed Point Theory Appl. 22, 58 (2020). https://doi.org/10.1007/s11784-020-00790-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11784-020-00790-9

Keywords

Mathematics Subject Classification

Navigation