Skip to main content
Log in

A review on the mechanical properties of polymer composites reinforced by carbon nanotubes and graphene

  • Review Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

Compared to carbon nanotubes (CNTs), graphene possesses high strength due to wrinkled surface texture caused by a high density of surface defects which benefits more contact with the polymer material than a rolled-up CNT. In the present review, we have discussed and compared the various properties of CNTs (1-D) and graphene (2-D) obtained in experimental results. The effects of covalent and non-covalent functionalization of CNTs and graphene on the properties of its composites have also been reviewed and compared. A comparative analysis has been carried out between CNTs and graphene-reinforced polymer composites. Furthermore, the synergetic effects of CNTs and graphene hybrid nanofiller on the mechanical properties of polymer composites have also been briefly discussed. Finally, this review concludes with the potential application and future challenges are discussed with regards to filler and their polymer composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Dasari BL, Nouri JM, Brabazon D, Naher S (2017) Graphene and derivatives—synthesis techniques, properties and their energy applications. Energy 140:766–778

    CAS  Google Scholar 

  2. Lee J-U, Yoon D, Cheong H (2012) Estimation of Young’s modulus of graphene by Raman spectroscopy. Nano Lett 12(9):4444–4448

    CAS  Google Scholar 

  3. Lee J-U, Yoon D, Kim H, Lee SW, Cheong H (2011) Thermal conductivity of suspended pristine graphene measured by Raman spectroscopy. Phys Rev B 83(8):081419

    Google Scholar 

  4. Marinho B, Ghislandi M, Tkalya E, Koning CE, de With G (2012) Electrical conductivity of compacts of graphene, multi-wall carbon nanotubes, carbon black, and graphite powder. Powder Technol 221:351–358

    CAS  Google Scholar 

  5. Rani A, Nam S-W, Oh K-A, Park M (2010) Electrical conductivity of chemically reduced graphene powders under compression. Carbon Lett 11(2):90–95

    Google Scholar 

  6. Kumar A, Sharma K, Dixit AR (2019) A review of the mechanical and thermal properties of graphene and its hybrid polymer nanocomposites for structural applications. J Mater Sci 54(8):5992–6026

    CAS  Google Scholar 

  7. Cho JH, Sun G, Cullinan M (2016) A method to manufacture repeatible graphene-based NEMS devices at the wafer-scale. In: ASME 2016 11th international manufacturing science and engineering conference: american society of mechanical engineers, pp V001T02A77–VT02A77.

  8. Azadmanjiri J, Srivastava VK, Kumar P, Nikzad M, Wang J, Yu A (2018) Two-and three-dimensional graphene-based hybrid composites for advanced energy storage and conversion devices. J Mater Chem A 6(3):702–734

    CAS  Google Scholar 

  9. Chen K, Song S, Liu F, Xue D (2015) Structural design of graphene for use in electrochemical energy storage devices. Chem Soc Rev 44(17):6230–6257

    CAS  Google Scholar 

  10. Yang Y, Asiri AM, Tang Z, Du D, Lin Y (2013) Graphene based materials for biomedical applications. Mater Today 16(10):365–373

    CAS  Google Scholar 

  11. Nanda SS, Papaefthymiou GC, Yi DK (2015) Functionalization of graphene oxide and its biomedical applications. Crit Rev Solid State Mater Sci 40(5):291–315

    CAS  Google Scholar 

  12. Zhang B, Wang Y, Zhai G (2016) Biomedical applications of the graphene-based materials. Mater Sci Eng C 61:953–964

    CAS  Google Scholar 

  13. Chatterjee S, Nafezarefi F, Tai N, Schlagenhauf L, Nüesch F, Chu B (2012) Size and synergy effects of nanofiller hybrids including graphene nanoplatelets and carbon nanotubes in mechanical properties of epoxy composites. Carbon 50(15):5380–5386

    CAS  Google Scholar 

  14. Qi Z, Tan Y, Zhang Z, Gao L, Zhang C, Tian J (2018) Synergistic effect of functionalized graphene oxide and carbon nanotube hybrids on mechanical properties of epoxy composites. RSC Adv 8(67):38689–38700

    CAS  Google Scholar 

  15. Yue L, Pircheraghi G, Monemian SA, Manas-Zloczower I (2014) Epoxy composites with carbon nanotubes and graphene nanoplatelets—dispersion and synergy effects. Carbon 78:268–278

    CAS  Google Scholar 

  16. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56

    CAS  Google Scholar 

  17. Fujisawa K, Kim HJ, Go SH, Muramatsu H, Hayashi T, Endo M et al (2016) A review of double-walled and triple-walled carbon nanotube synthesis and applications. Appl Sci 6(4):109

    Google Scholar 

  18. Popov VN (2004) Carbon nanotubes: properties and application. Mater Sci Eng R Rep 43(3):61–102

    Google Scholar 

  19. Kim H-I, Wang M, Lee SK, Kang J, Nam J-D, Ci L et al (2017) Tensile properties of millimeter-long multi-walled carbon nanotubes. Sci Rep 7(1):9512

    Google Scholar 

  20. Walters D, Ericson L, Casavant M, Liu J, Colbert D, Smith K et al (1999) Elastic strain of freely suspended single-wall carbon nanotube ropes. Appl Phys Lett 74(25):3803–3805

    CAS  Google Scholar 

  21. Pan Z, Xie S, Lu L, Chang B, Sun L, Zhou W et al (1999) Tensile tests of ropes of very long aligned multiwall carbon nanotubes. Appl Phys Lett 74(21):3152–3154

    CAS  Google Scholar 

  22. Salvetat J-P, Bonard J-M, Thomson N, Kulik A, Forro L, Benoit W et al (1999) Mechanical properties of carbon nanotubes. Appl Phys A 69(3):255–260

    CAS  Google Scholar 

  23. Park O-K, Lee W, Hwang JY, You N-H, Jeong Y, Kim SM et al (2016) Mechanical and electrical properties of thermochemically cross-linked polymer carbon nanotube fibers. Compos A Appl Sci Manuf 91:222–228

    CAS  Google Scholar 

  24. Kim D, Zhu L, Han C-S, Kim J-H, Baik S (2011) Raman characterization of thermal conduction in transparent carbon nanotube films. Langmuir 27(23):14532–14538

    CAS  Google Scholar 

  25. Zu M, Lu W, Li Q-W, Zhu Y, Wang G, Chou T-W (2012) Characterization of carbon nanotube fiber compressive properties using tensile recoil measurement. ACS Nano 6(5):4288–4297

    CAS  Google Scholar 

  26. Xu W, Chen Y, Zhan H, Wang JN (2016) High-strength carbon nanotube film from improving alignment and densification. Nano Lett 16(2):946–952

    CAS  Google Scholar 

  27. Wu Y, Huang M, Wang F, Huang XH, Rosenblatt S, Huang L et al (2008) Determination of the Young’s modulus of structurally defined carbon nanotubes. Nano Lett 8(12):4158–4161

    CAS  Google Scholar 

  28. Yu M-F, Files BS, Arepalli S, Ruoff RS (2000) Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys Rev Lett 84(24):5552

    CAS  Google Scholar 

  29. Wernik J, Meguid S (2014) On the mechanical characterization of carbon nanotube reinforced epoxy adhesives. Mater Des 59:19–32

    CAS  Google Scholar 

  30. Zu M, Li Q, Zhu Y, Dey M, Wang G, Lu W et al (2012) The effective interfacial shear strength of carbon nanotube fibers in an epoxy matrix characterized by a microdroplet test. Carbon 50(3):1271–1279

    CAS  Google Scholar 

  31. Evora MC, Lu X, Hiremath N, Kang N-G, Hong K, Uribe R et al (2018) Single-step process to improve the mechanical properties of carbon nanotube yarn. Beilstein J Nanotechnol 9:545

    CAS  Google Scholar 

  32. Hossain MM, Islam MA, Shima H, Hasan M, Lee M (2017) Alignment of carbon nanotubes in carbon nanotube fibers through nanoparticles: a route for controlling mechanical and electrical properties. ACS Appl Mater Interfaces 9(6):5530–5542

    CAS  Google Scholar 

  33. Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887):385–388

    CAS  Google Scholar 

  34. Demczyk BG, Wang YM, Cumings J, Hetman M, Han W, Zettl A et al (2002) Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes. Mater Sci Eng A 334(1–2):173–178

    Google Scholar 

  35. Kumar A, Sharma K, Dixit AR (2020) A review on the mechanical and thermal properties of graphene and graphene-based polymer nanocomposites: understanding of modelling and MD simulation. Mol Simul 46(2):136–154

    CAS  Google Scholar 

  36. Singh PK, Sharma K, Kumar A, Shukla M (2017) Effects of functionalization on the mechanical properties of multiwalled carbon nanotubes: a molecular dynamics approach. J Compos Mater 51(5):671–680

    CAS  Google Scholar 

  37. Gómez-Navarro C, Burghard M, Kern K (2008) Elastic properties of chemically derived single graphene sheets. Nano Lett 8(7):2045–2049

    Google Scholar 

  38. Suk JW, Piner RD, An J, Ruoff RS (2010) Mechanical properties of monolayer graphene oxide. ACS Nano 4(11):6557–6564

    CAS  Google Scholar 

  39. Kang S-H, Fang T-H, Hong Z-H, Chuang C-H (2013) Mechanical properties of free-standing graphene oxide. Diam Relat Mater 38:73–78

    CAS  Google Scholar 

  40. Ranjbartoreh AR, Wang B, Shen X, Wang G (2011) Advanced mechanical properties of graphene paper. J Appl Phys 109(1):014306

    Google Scholar 

  41. Sheng L, Wei T, Liang Y, Jiang L, Qu L, Fan Z (2017) Ultra-high toughness all graphene fibers derived from synergetic effect of interconnected graphene ribbons and graphene sheets. Carbon 120:17–22

    CAS  Google Scholar 

  42. Kumar A, Sharma K, Dixit AR (2020) Carbon nanotube-and graphene-reinforced multiphase polymeric composites: review on their properties and applications. J Mater Sci 55(7):2682–2724

    CAS  Google Scholar 

  43. Hsiao M-C, Liao S-H, Yen M-Y, Liu P-I, Pu N-W, Wang C-A et al (2010) Preparation of covalently functionalized graphene using residual oxygen-containing functional groups. ACS Appl Mater Interfaces 2(11):3092–3099

    CAS  Google Scholar 

  44. Park S, Dikin DA, Nguyen ST, Ruoff RS (2009) Graphene oxide sheets chemically cross-linked by polyallylamine. J Phys Chem C 113(36):15801–15804

    CAS  Google Scholar 

  45. Dyke CA, Tour JM (2004) Covalent functionalization of single-walled carbon nanotubes for materials applications. J Phys Chem A 108(51):11151–11159

    CAS  Google Scholar 

  46. Ma P-C, Siddiqui NA, Marom G, Kim J-K (2010) Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos A Appl Sci Manuf 41(10):1345–1367

    Google Scholar 

  47. Tseng C-H, Wang C-C, Chen C-Y (2007) Functionalizing carbon nanotubes by plasma modification for the preparation of covalent-integrated epoxy composites. Chem Mater 19(2):308–315

    CAS  Google Scholar 

  48. Xie L, Xu F, Qiu F, Lu H, Yang Y (2007) Single-walled carbon nanotubes functionalized with high bonding density of polymer layers and enhanced mechanical properties of composites. Macromolecules 40(9):3296–3305

    CAS  Google Scholar 

  49. Shi X, Wang J, Jiang B, Yang Y (2013) Hindered phenol grafted carbon nanotubes for enhanced thermal oxidative stability of polyethylene. Polymer 54(3):1167–1176

    CAS  Google Scholar 

  50. Mallakpour S, Zadehnazari A (2017) Improved covalent functionalization of multi-walled carbon nanotubes using ascorbic acid for poly (amide–imide) composites having dopamine linkages. Bull Mater Sci 40(1):213–222

    CAS  Google Scholar 

  51. Kuila T, Bose S, Hong CE, Uddin ME, Khanra P, Kim NH et al (2011) Preparation of functionalized graphene/linear low density polyethylene composites by a solution mixing method. Carbon 49(3):1033–1037

    CAS  Google Scholar 

  52. Huang W, Taylor S, Fu K, Lin Y, Zhang D, Hanks TW et al (2002) Attaching proteins to carbon nanotubes via diimide-activated amidation. Nano Lett 2(4):311–314

    CAS  Google Scholar 

  53. Cano M, Khan U, Sainsbury T, O’Neill A, Wang Z, McGovern IT et al (2013) Improving the mechanical properties of graphene oxide based materials by covalent attachment of polymer chains. Carbon 52:363–371

    CAS  Google Scholar 

  54. Yousefi N, Lin X, Zheng Q, Shen X, Pothnis JR, Jia J et al (2013) Simultaneous in situ reduction, self-alignment and covalent bonding in graphene oxide/epoxy composites. Carbon 59:406–417

    CAS  Google Scholar 

  55. Zhou Z, Yan X, Cook TR, Saha ML, Stang PJ (2016) Engineering functionalization in a supramolecular polymer: hierarchical self-organization of triply orthogonal non-covalent interactions on a supramolecular coordination complex platform. J Am Chem Soc 138(3):806–809

    CAS  Google Scholar 

  56. Di Crescenzo A, Ettorre V, Fontana A (2014) Non-covalent and reversible functionalization of carbon nanotubes. Beilstein J Nanotechnol 5:1675

    Google Scholar 

  57. Ji X, Xu Y, Zhang W, Cui L, Liu J (2016) Review of functionalization, structure and properties of graphene/polymer composite fibers. Compos A Appl Sci Manuf 87:29–45

    CAS  Google Scholar 

  58. Kaur P, Shin M-S, Sharma N, Kaur N, Joshi A, Chae S-R et al (2015) Non-covalent functionalization of graphene with poly (diallyl dimethylammonium) chloride: effect of a non-ionic surfactant. Int J Hydrog Energy 40(3):1541–1547

    CAS  Google Scholar 

  59. Stankovich S, Piner RD, Chen X, Wu N, Nguyen ST, Ruoff RS (2006) Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly (sodium 4-styrenesulfonate). J Mater Chem 16(2):155–158

    CAS  Google Scholar 

  60. Song S, Wan C, Zhang Y (2015) Non-covalent functionalization of graphene oxide by pyrene-block copolymers for enhancing physical properties of poly (methyl methacrylate). RSC Adv 5(97):79947–79955

    CAS  Google Scholar 

  61. Orellana W, Correa JD (2015) Noncovalent functionalization of carbon nanotubes and graphene with tetraphenylporphyrins: stability and optical properties from ab initio calculations. J Mater Sci 50(2):898–905

    CAS  Google Scholar 

  62. Maity N, Mandal A, Nandi AK (2016) Synergistic interfacial effect of polymer stabilized graphene via non-covalent functionalization in poly (vinylidene fluoride) matrix yielding superior mechanical and electronic properties. Polymer 88:79–93

    CAS  Google Scholar 

  63. Das S, Irin F, Ahmed HT, Cortinas AB, Wajid AS, Parviz D et al (2012) Non-covalent functionalization of pristine few-layer graphene using triphenylene derivatives for conductive poly (vinyl alcohol) composites. Polymer 53(12):2485–2494

    CAS  Google Scholar 

  64. Yuan W, Chan-Park MB (2012) Covalent cum noncovalent functionalizations of carbon nanotubes for effective reinforcement of a solution cast composite film. ACS Appl Mater Interfaces 4(4):2065–2073

    CAS  Google Scholar 

  65. Ji X, Cui L, Xu Y, Liu J (2015) Non-covalent interactions for synthesis of new graphene based composites. Compos Sci Technol 106:25–31

    CAS  Google Scholar 

  66. Teng C-C, Ma C-CM, Lu C-H, Yang S-Y, Lee S-H, Hsiao M-C et al (2011) Thermal conductivity and structure of non-covalent functionalized graphene/epoxy composites. Carbon 49(15):5107–5116

    CAS  Google Scholar 

  67. Qian Y, Wu H, Yuan D, Li X, Yu W, Wang C (2015) In situ polymerization of polyimide-based nanocomposites via covalent incorporation of functionalized graphene nanosheets for enhancing mechanical, thermal, and electrical properties. J Appl Polym Sci 132(44):42724

    Google Scholar 

  68. Liu F, Guo K (2014) Reinforcing epoxy resin through covalent integration of functionalized graphene nanosheets. Polym Adv Technol 25(4):418–423

    CAS  Google Scholar 

  69. Wan Y-J, Tang L-C, Yan D, Zhao L, Li Y-B, Wu L-B et al (2013) Improved dispersion and interface in the graphene/epoxy composites via a facile surfactant-assisted process. Compos Sci Technol 82:60–68

    CAS  Google Scholar 

  70. Chatterjee S, Wang J, Kuo W, Tai N, Salzmann C, Li W et al (2012) Mechanical reinforcement and thermal conductivity in expanded graphene nanoplatelets reinforced epoxy composites. Chem Phys Lett 531:6–10

    CAS  Google Scholar 

  71. Li J, Zhang G, Deng L, Zhao S, Gao Y, Jiang K et al (2014) In situ polymerization of mechanically reinforced, thermally healable graphene oxide/polyurethane composites based on Diels-Alder chemistry. J Mater Chem A 2(48):20642–20649

    CAS  Google Scholar 

  72. Yang H, Ye L, Gong J, Li M, Jiang Z, Wen X et al (2017) Simultaneously improving the mechanical properties and flame retardancy of polypropylene using functionalized carbon nanotubes by covalently wrapping flame retardants followed by linking polypropylene. Mater Chem Front 1(4):716–726

    CAS  Google Scholar 

  73. Liu R, Chen Y, Ma Q, Luo J, Wei W, Liu X (2017) Noncovalent functionalization of carbon nanotube using poly (vinylcarbazole)-based compatibilizer for reinforcement and conductivity improvement in epoxy composite. J Appl Polym Sci 134(26):45022

    Google Scholar 

  74. Ma J, Nan X, Liu J (2017) Investigation of the dielectric, mechanical, and thermal properties of noncovalent functionalized MWCNTs/polyvinylidene fluoride (PVDF) composites. Polym Adv Technol 28(2):166–173

    CAS  Google Scholar 

  75. Curtzwiler G, Plagge A, Vorst K, Story J (2013) Facile covalent surface functionalization of multiwalled carbon nanotubes with poly (2-hydroxyethyl methacrylate) and interface related studies when incorporated into epoxy composites. J Appl Polym Sci 128(5):3010–3018

    CAS  Google Scholar 

  76. Jiang N, Abe H (2015) Crystallization and mechanical behavior of covalent functionalized carbon nanotube/poly (3-hydroxybutyrate-co-3-hydroxyvalerate) nanocomposites. J Appl Polym Sci 132(25):42136

    Google Scholar 

  77. Wang L, Tan Y, Wang X, Xu T, Xiao C, Qi Z (2018) Mechanical and fracture properties of hyperbranched polymer covalent functionalized multiwalled carbon nanotube-reinforced epoxy composites. Chem Phys Lett 706:31–39

    CAS  Google Scholar 

  78. Cha J, Kim J, Ryu S, Hong SH (2019) Comparison to mechanical properties of epoxy nanocomposites reinforced by functionalized carbon nanotubes and graphene nanoplatelets. Compos B Eng 162:283–288

    CAS  Google Scholar 

  79. Li Y, Wang S, Wang Q, Xing M (2018) A comparison study on mechanical properties of polymer composites reinforced by carbon nanotubes and graphene sheet. Compos B Eng 133:35–41

    CAS  Google Scholar 

  80. Aoyama S, Ismail I, Park YT, Yoshida Y, Macosko CW, Ougizawa T (2018) Polyethylene terephthalate/trimellitic anhydride modified graphene nanocomposites. ACS Appl Nano Mater 1(11):6301–6311

    CAS  Google Scholar 

  81. Shabafrooz V, Bandla S, Allahkarami M, Hanan JC (2018) Graphene/polyethylene terephthalate nanocomposites with enhanced mechanical and thermal properties. J Polym Res 25(12):256

    Google Scholar 

  82. Inuwa IM, Hassan A, Samsudin SA, Mohamad Kassim MH, Jawaid M (2014) Mechanical and thermal properties of exfoliated graphite nanoplatelets reinforced polyethylene terephthalate/polypropylene composites. Polym Compos 35(10):2029–2035

    CAS  Google Scholar 

  83. Wang X, Liu X, Yuan H, Liu H, Liu C, Li T et al (2018) Non-covalently functionalized graphene strengthened poly (vinyl alcohol). Mater Des 139:372–379

    CAS  Google Scholar 

  84. Yadav A, Kumar A, Sharma K, Shukla MK (2019) Investigating the effects of amine functionalized graphene on the mechanical properties of epoxy nanocomposites. Mater Today Proc 11:837–842

    CAS  Google Scholar 

  85. Datsyuk V, Trotsenko S, Trakakis G, Boden A, Vyzas-Asimakopoulos K, Parthenios J et al (2020) Thermal properties enhancement of epoxy resins by incorporating polybenzimidazole nanofibers filled with graphene and carbon nanotubes as reinforcing material. Polym Test 82:106317

    CAS  Google Scholar 

  86. Zakaria MR, Kudus MHA, Akil HM, Thirmizir MZM (2017) Comparative study of graphene nanoparticle and multiwall carbon nanotube filled epoxy nanocomposites based on mechanical, thermal and dielectric properties. Compos B Eng 119:57–66

    CAS  Google Scholar 

  87. Zakaria MR, Abdul Kudus MH, Md Akil H, Thirmizir MZM, Abdul Malik MFI, Othman MBH et al (2019) Comparative study of single-layer graphene and single-walled carbon nanotube-filled epoxy nanocomposites based on mechanical and thermal properties. Polym Compos 40(S2):E1840–E1849

    CAS  Google Scholar 

  88. Wang J, Jin X, Li C, Wang W, Wu H, Guo S (2019) Graphene and graphene derivatives toughening polymers: toward high toughness and strength. Chem Eng J 370:831–854

    CAS  Google Scholar 

  89. Guo C, Luo X, Shah W, Huang B, Li J, Umer M et al (2020) Mechanical and electrical properties of carbon nanotube-reinforced Al2O3 nanocomposites. J Mater Sci 55(20):8728–8740

    CAS  Google Scholar 

  90. Marouf BT, Mai Y-W, Bagheri R, Pearson RA (2016) Toughening of epoxy nanocomposites: nano and hybrid effects. Polym Rev 56(1):70–112

    CAS  Google Scholar 

  91. Mirjalili V, Hubert P (2010) Modelling of the carbon nanotube bridging effect on the toughening of polymers and experimental verification. Compos Sci Technol 70(10):1537–1543

    CAS  Google Scholar 

  92. Li X, Zhang W, Zhai S, Tang S, Zhou X, Yu D et al (2015) Investigation into the toughening mechanism of epoxy reinforced with multi-wall carbon nanotubes. e-Polymers 15(5):335–343

    CAS  Google Scholar 

  93. Khan SU, Pothnis JR, Kim J-K (2013) Effects of carbon nanotube alignment on electrical and mechanical properties of epoxy nanocomposites. Compos A Appl Sci Manuf 49:26–34

    CAS  Google Scholar 

  94. Cha J, Jun GH, Park JK, Kim JC, Ryu HJ, Hong SH (2017) Improvement of modulus, strength and fracture toughness of CNT/Epoxy nanocomposites through the functionalization of carbon nanotubes. Compos B Eng 129:169–179

    CAS  Google Scholar 

  95. Badakhsh A, Lee Y-M, Rhee KY, Park CW, An K-H, Kim B-J (2019) Improvement of thermal, electrical and mechanical properties of composites using a synergistic network of length controlled-CNTs and graphene nanoplatelets. Compos B Eng 175:107075

    Google Scholar 

  96. Prolongo S, Moriche R, Ureña A, Flórez S, Gaztelumendi I, Arribas C et al (2018) Carbon nanotubes and graphene into thermosetting composites: synergy and combined effect. J Appl Polym Sci 135:46475

    Google Scholar 

  97. Wang J, Jin X, Wu H, Guo S (2017) Polyimide reinforced with hybrid graphene oxide@ carbon nanotube: toward high strength, toughness, electrical conductivity. Carbon 123:502–513

    CAS  Google Scholar 

  98. Yang S-Y, Lin W-N, Huang Y-L, Tien H-W, Wang J-Y, Ma C-CM et al (2011) Synergetic effects of graphene platelets and carbon nanotubes on the mechanical and thermal properties of epoxy composites. Carbon 49(3):793–803

    CAS  Google Scholar 

  99. Liu F, Hu N, Ning H, Atobe S, Yan C, Liu Y et al (2017) Investigation on the interfacial mechanical properties of hybrid graphene-carbon nanotube/polymer nanocomposites. Carbon 115:694–700

    CAS  Google Scholar 

  100. Zhang Y, Zhuang X, Muthu J, Mabrouki T, Fontaine M, Gong Y et al (2014) Load transfer of graphene/carbon nanotube/polyethylene hybrid nanocomposite by molecular dynamics simulation. Compos B Eng 63:27–33

    CAS  Google Scholar 

  101. Bronnikov S, Kostromin S, Asandulesa M, Podshivalov A, Timpu D (2019) Morphology, structure, and segmental dynamics in polyazomethine/hybrid carbon nanofillers composites. Polym Compos 40(12):4638–4649

    CAS  Google Scholar 

  102. He X, Chen Y, Zhu K, Wang S, Zhang H, He W et al (2018) Electric and thermal performance of poly (phenylene oxide)-based composites with synergetic modification of carbon nanotubes and nanoplatelets. Polym Compos 39(S3):E1920–E1927

    CAS  Google Scholar 

  103. Shukla MK, Sharma K (2019) Effect of functionalized graphene/CNT ratio on the synergetic enhancement of mechanical and thermal properties of epoxy hybrid composite. Mater Res Express 6(8):085318

    CAS  Google Scholar 

  104. Yao X, Jiang J, Xu C, Zhou L, Deng C, Wang J (2017) Improved interfacial properties of carbon fiber/epoxy composites through graphene oxide-assisted deposition of carbon nanotubes on carbon fiber surface. Fibers Polym 18(7):1323–1329

    CAS  Google Scholar 

  105. Hua Y, Li F, Liu Y, Huang G-W, Xiao H-M, Li Y-Q et al (2017) Positive synergistic effect of graphene oxide/carbon nanotube hybrid coating on glass fiber/epoxy interfacial normal bond strength. Compos Sci Technol 149:294–304

    CAS  Google Scholar 

  106. Zhou L, Liu H, Zhang X (2015) Graphene and carbon nanotubes for the synergistic reinforcement of polyamide 6 fibers. J Mater Sci 50(7):2797–2805

    CAS  Google Scholar 

  107. Han S, Meng Q, Pan X, Liu T, Zhang S, Wang Y et al (2019) Synergistic effect of graphene and carbon nanotube on lap shear strength and electrical conductivity of epoxy adhesives. J Appl Polym Sci 136(42):48056

    Google Scholar 

  108. Bisht A, Dasgupta K, Lahiri D (2020) Evaluating the effect of addition of nanodiamond on the synergistic effect of graphene-carbon nanotube hybrid on the mechanical properties of epoxy based composites. Polym Test 81:106274

    CAS  Google Scholar 

  109. Rostami A, Moosavi MI (2020) High-performance thermoplastic polyurethane nanocomposites induced by hybrid application of functionalized graphene and carbon nanotubes. J Appl Polym Sci 137(14):48520

    CAS  Google Scholar 

  110. Navidfar A, Trabzon L (2019) Graphene type dependence of carbon nanotubes/graphene nanoplatelets polyurethane hybrid nanocomposites: micromechanical modeling and mechanical properties. Compos B Eng 176:107337

    CAS  Google Scholar 

  111. Mi X, Zhong L, Wei F, Zeng L, Zhang J, Zhang D et al (2019) Fabrication of halloysite nanotubes/reduced graphene oxide hybrids for epoxy composites with improved thermal and mechanical properties. Polym Test 76:473–480

    Google Scholar 

  112. Zhang H, Zhang G, Tang M, Zhou L, Li J, Fan X et al (2018) Synergistic effect of carbon nanotube and graphene nanoplates on the mechanical, electrical and electromagnetic interference shielding properties of polymer composites and polymer composite foams. Chem Eng J 353:381–393

    CAS  Google Scholar 

  113. Bagotia N, Choudhary V, Sharma D (2019) Synergistic effect of graphene/multiwalled carbon nanotube hybrid fillers on mechanical, electrical and EMI shielding properties of polycarbonate/ethylene methyl acrylate nanocomposites. Compos B Eng 159:378–388

    CAS  Google Scholar 

  114. Min C, Liu D, Shen C, Zhang Q, Song H, Li S et al (2018) Unique synergistic effects of graphene oxide and carbon nanotube hybrids on the tribological properties of polyimide nanocomposites. Tribol Int 117:217–224

    CAS  Google Scholar 

  115. Zhang L, Tu S, Wang H, Du Q (2018) Preparation of polymer/graphene oxide nanocomposites by a two-step strategy composed of in situ polymerization and melt processing. Compos Sci Technol 154:1–7

    Google Scholar 

  116. Salom C, Prolongo M, Toribio A, Martínez-Martínez A, de Cárcer IA, Prolongo S (2017) Mechanical properties and adhesive behavior of epoxy-graphene nanocomposites. Int J Adhes Adhes 84:119–125

    Google Scholar 

  117. Elmarakbi A, Azoti W (2015) Novel composite materials for automotive applications: concepts and challenges for energy-efficient and safe vehicles. In: Proceedings of the 10th international conference on composite science and technology (ICCST/10)

  118. Deshmukh K, Joshi GM (2014) Thermo-mechanical properties of poly (vinyl chloride)/graphene oxide as high performance nanocomposites. Polym Test 34:211–219

    CAS  Google Scholar 

  119. Elmarakbi A, El-Safty S, Martorana B, Azoti W (2016) Nanocomposites for automotive: enhanced graphene-based polymer materials and multi-scale approach. Int J Autom Compos 2(2):155–166

    Google Scholar 

  120. Elmarakbi A, Karagiannidis P, Ciappa A, Innocente F, Galise F, Martorana B et al (2019) 3-Phase hierarchical graphene-based epoxy nanocomposite laminates for automotive applications. J Mater Sci Technol 35(10):2169–2177

    Google Scholar 

  121. Yang H, Yao X, Yuan L, Gong L, Liu Y (2019) Strain-sensitive electrical conductivity of carbon nanotube-graphene-filled rubber composites under cyclic loading. Nanoscale 11(2):578–586

    CAS  Google Scholar 

  122. Na W-J, Byun J-H, Lee M-G, Yu W-R (2015) In-situ damage sensing of woven composites using carbon nanotube conductive networks. Compos A Appl Sci Manuf 77:229–236

    CAS  Google Scholar 

  123. Li C, Chou T-W (2008) Modeling of damage sensing in fiber composites using carbon nanotube networks. Compos Sci Technol 68(15–16):3373–3379

    CAS  Google Scholar 

  124. Pandey N, Shukla S, Singh N (2017) Water purification by polymer nanocomposites: an overview. Nanocomposites 3(2):47–66

    CAS  Google Scholar 

  125. Zhao H, Ding R, Zhao X, Li Y, Qu L, Pei H et al (2017) Graphene-based nanomaterials for drug and/or gene delivery, bioimaging, and tissue engineering. Drug Discov Today 22(9):1302–1317

    CAS  Google Scholar 

  126. Zhang C, Wang L, Zhai T, Wang X, Dan Y, Turng L-S (2016) The surface grafting of graphene oxide with poly (ethylene glycol) as a reinforcement for poly (lactic acid) nanocomposite scaffolds for potential tissue engineering applications. J Mech Behav Biomed Mater 53:403–413

    CAS  Google Scholar 

  127. Lee HU, Yoo HY, Lkhagvasuren T, Song YS, Park C, Kim J et al (2013) Enzymatic fuel cells based on electrodeposited graphite oxide/cobalt hydroxide/chitosan composite–enzymeelectrode. Biosens Bioelectron 42:342–348

    Google Scholar 

  128. Du L, Jana SC (2007) Highly conductive epoxy/graphite composites for bipolar plates in proton exchange membrane fuel cells. J Power Sources 172(2):734–741

    CAS  Google Scholar 

  129. Liu C, Li J, Jin Z, Hou P, Zhao H, Wang L (2019) Synthesis of graphene-epoxy nanocomposites with the capability to self-heal underwater for materials protection. Compos Commun 15:155–161

    Google Scholar 

  130. Huo P, Zhao P, Wang Y, Liu B, Yin G, Dong M (2018) A roadmap for achieving sustainable energy conversion and storage: graphene-based composites used both as an electrocatalyst for oxygen reduction reactions and an electrode material for a supercapacitor. Energies 11(1):167

    Google Scholar 

  131. Pant B, Park M, Jang R-S, Choi W-C, Kim H-Y, Park S-J (2017) Synthesis, characterization, and antibacterial performance of Ag-modified graphene oxide reinforced electrospun polyurethane nanofibers. Carbon Lett 23:17–21

    Google Scholar 

  132. Pant B, Pokharel P, Tiwari AP, Saud PS, Park M, Ghouri ZK et al (2015) Characterization and antibacterial properties of aminophenol grafted and Ag NPs decorated graphene nanocomposites. Ceram Int 41(4):5656–5662

    CAS  Google Scholar 

  133. Bhattacharjee S, Joshi R, Chughtai AA, Macintyre CR (2019) Graphene modified multifunctional personal protective clothing. Adv Mater Interfaces 6(21):1900622

    CAS  Google Scholar 

  134. Zhong H, Zhu Z, Lin J, Cheung CF, Lu VL, Yan F et al (2020) Reusable and recyclable graphene masks with outstanding superhydrophobic and photothermal performances. ACS Nano 14(5):6213–6221

    CAS  Google Scholar 

  135. Justino CI, Gomes AR, Freitas AC, Duarte AC, Rocha-Santos TA (2017) Graphene based sensors and biosensors. Trends Anal Chem 91:53–66

    CAS  Google Scholar 

  136. Sahu SK, Badgayan ND, Sreekanth PR (2019) Understanding the influence of contact pressure on the wear performance of HDPE/multi-dimensional carbon filler based hybrid polymer nanocomposites. Wear 438–439. https://doi.org/10.1016/j.wear.2019.01.125

Download references

Funding

No financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Kumar.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Sharma, K. & Dixit, A.R. A review on the mechanical properties of polymer composites reinforced by carbon nanotubes and graphene. Carbon Lett. 31, 149–165 (2021). https://doi.org/10.1007/s42823-020-00161-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-020-00161-x

Keywords

Navigation