Skip to main content

Advertisement

Log in

A first-principles investigation on electronic, optical and thermoelectric properties of \(\hbox {La}_{2}\hbox {Pd}_{2}\hbox {O}_{5}\) compound

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

A number of ternary-semiconductor oxides have shown promise for potential applications in catalysis, thermoelectricity, optoelectronics and electrochemistry. In this work, the thermoelectric and optoelectronic properties of \(\hbox {La}_{2}\hbox {Pd}_{2}\hbox {O}_{5}\) compound are studied by the full-potential linearized augmented plane wave method based on density functional theory. The electronic band structure shows an indirect band gap of 1.342 eV for \(\hbox {La}_{2}\hbox {Pd}_{2}\hbox {O}_{5}\). Partial and total density of states indicate strong hybridization among different electronic orbitals. The upper part of the valence band is dominated by the Pd-d and O-p states, while the lower conduction band originates mainly from the Pd-d state. Dielectric functions including the imaginary and real parts, along with other optical constants, such as absorption coefficient, energy loss function, reflectivity and refractive index, have been reported for the first time. Thermoelectric properties, including electrical and thermal conductivity, Seebeck coefficient and power factor with variation in temperature are also presented and discussed using semi-classical Boltzmann transport theory for the first time for \(\hbox {La}_{2}\hbox {Pd}_{2}\hbox {O}_{5}\). It has been found that \(\hbox {La}_{2}\hbox {Pd}_{2}\hbox {O}_{5}\) has attractive optoelectronic and thermal properties that can make it a suitable candidate for efficient thermoelectric and optoelectronic device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Child M, Koskinen O, Linnanen L and Breyer C 2018 J. Renew. Sustain. Energy91 321

    Article  Google Scholar 

  2. Jacob K T, Lwin K T and Waseda Y 2002 Solid State Sci.4 205

    Article  CAS  Google Scholar 

  3. Ravetti Duran R, Escudero Falsetti P, Muhr L, Privat R and Barth D 2018 J. Supercrit. Fluids138 17

    Article  CAS  Google Scholar 

  4. Shibasaki S and Terasaki I 2006 J. Phys. Soc. Jpn.75 024705

    Article  Google Scholar 

  5. Attfield J P and Ferey G 1989 J. Solid State Chem.80 286

    Article  CAS  Google Scholar 

  6. Li G, Liu S, Piao Y, Jia B and Wang Q 2018 Mater. Des.154 41

    Article  CAS  Google Scholar 

  7. Madsen G K H and Singh D J 2006 Comput. Phys. Commun.175 67

    Article  CAS  Google Scholar 

  8. Joshi H, Rai D P, Verma K D, Bhamu K C and Thapa R K 2017 J. Alloys Compd.726 1155

    Article  CAS  Google Scholar 

  9. Attfield J P 1988 Acta Cryst. B44 563

    Article  Google Scholar 

  10. Nanao Y, Krockenberger Y, Ikeda A, Taniyasu Y, Naito M and Yamamoto H 2018 Phys. Rev. Mater.2 085003

    Article  CAS  Google Scholar 

  11. Blaha P, Schwarz K and Luitz J 1991 WIEN97, Karlheinz Schwarz. Techn. Universit at Wien, Austria, ISBN: 3-9501031-0-4

  12. Wong K M, Alay-e-Abbas S M, Shaukat A, Fang Y and Lei Y 2013 J. Appl. Phys.113 014304

    Article  Google Scholar 

  13. Wong K M, Alay-e-Abbas S M, Fang Y, Shaukat A and Lei Y 2013 J. Appl. Phys.114 034901

    Article  Google Scholar 

  14. Irfan M, Azam S, Hussain S, Ayaz Khan S, Sohail M, Makhdoom M et al 2018 J. Alloys Compd.766 536

    Article  CAS  Google Scholar 

  15. Irfan M, Abbas Z, Ayaz Khan S, Sohail M, Rani M, Azam S et al 2018 J. Alloys Compd.750 804

    Article  CAS  Google Scholar 

  16. Irfan M, Hussain S, Ayaz Khan S, Goumri-Said S and Azam S 2017 J. Electron. Mater.47 1481

    Article  Google Scholar 

  17. Irfan M, Azam S, Ayaz Khan S, Sohail M, Ali Z, Kityk I V et al 2018 Physica B545 69

    Article  CAS  Google Scholar 

  18. Perdew J P and Zunger A 1981 Phys. Rev. B23 5048

    Article  CAS  Google Scholar 

  19. Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett.77 3865

    Article  CAS  Google Scholar 

  20. Engel E and Vosko S H 1994 Phys. Rev. B.50 10498

    Article  CAS  Google Scholar 

  21. Lundstrom M 2000 Fundamentals of carrier transport 2nd edn (Cambridge, UK: Cambridge University Press)

    Book  Google Scholar 

  22. Azam S and Reshak A H 2014 Solid State Sci.32 26

    Article  CAS  Google Scholar 

  23. Becke A D and Edgecombe K E 1990 J. Chem. Phys.92 5397

    Article  CAS  Google Scholar 

  24. Silvi B and Savin A 1994 Nature371 683

    Article  CAS  Google Scholar 

  25. Tell J S 1956 Phys. Rev.104 1760

    Article  Google Scholar 

  26. Landau L D and Lifshitz E M 1960 Electrodynamics in continuous media (Oxford: Pergamon Press)

    Google Scholar 

  27. Kramers H A 1956 Collected science papers (Amsterdam: North Holland Publishing Company)

    Google Scholar 

  28. Kronig R de L 1926 J. Opt. Soc. Am.12 547

    Article  Google Scholar 

  29. Delin A, Ravindran P, Eriksson O and Wills J M 1998 Int. J. Quantum Chem.69 349

    Article  CAS  Google Scholar 

  30. Roknuzzaman M, Hadi M A, Abden M J, Nasir M T, Islam A K M A, Ali M S et al 2016 Comput. Mater. Sci.113 148

    Article  CAS  Google Scholar 

  31. Parvin F and Naqib S H 2017 Chin. Phys. B26 106201

    Article  Google Scholar 

  32. Chowdhury A, Ali M A, Hossain M M, Uddin M M, Naqib S H and Islam A K M A 2018 Phys. Status Solidi B255 1700235

    Article  Google Scholar 

  33. Irfan M, Azam S, Hussain S, Ayaz Khan S, Sohail M, Ahmad M et al 2018 J. Phys. Chem. Solids119 85

    Article  CAS  Google Scholar 

  34. Wooten F 1972 Optical properties of solids (New York: Academic Press)

    Google Scholar 

  35. Vandersande J W and Wood C 1986 Contemp. Phys.27 117

    Article  CAS  Google Scholar 

  36. Ali M A, Hossain M A, Rayhan M A, Hossain M M, Uddin M M, Roknuzzaman M et al 2019 J. Alloys Compd.781 37

    Article  CAS  Google Scholar 

  37. Liu W, Kim H S, Jie Q and Ren Z 2016 Scr. Mater.111 3

    Article  CAS  Google Scholar 

  38. He J, Hao S, Xia Y, Shahab Naghavi S, Ozoliņš V and Wolverton C 2017 Chem. Mater.29 2529

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is funded by the Higher Education Commission (HEC) of Pakistan under the National Research Program for Universities (NRPU) with the project no. HEC/R&D/NRPU/2017/7876. The authors from Majmaah extend their appreciation to the Deanship of Scientific Research at Majmaah University for funding this work under project number (RPG-2019-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S H Naqib.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azam, S., Irfan, M., Iqbal, M.W. et al. A first-principles investigation on electronic, optical and thermoelectric properties of \(\hbox {La}_{2}\hbox {Pd}_{2}\hbox {O}_{5}\) compound. Bull Mater Sci 43, 138 (2020). https://doi.org/10.1007/s12034-020-02115-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-02115-5

Keywords

Navigation