Skip to main content

Advertisement

Log in

Production and characterization of an enzyme extract with cellulase activity produced by an indigenous strain of Fusarium verticillioides ITV03 using sweet sorghum bagasse

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Objectives

To evaluate a strain of Fusarium verticillioides ITV03 isolated from wood residues in the Veracruz region of Mexico. Endoglucanase and β-glucosidase production by submerged fermentation was optimized using a Box–Behnken design, where the independent variables were urea, ammonium sulfate and yeast extract.

Results

After optimization, an endoglucanase activity of 0.27 U/mL was achieved; subsequently, three carbon sources were evaluated (carboxymethyl cellulose, sweet sorghum bagasse cellulose and delignified sweet sorghum bagasse (DSSB). The results showed that DSSB yielded the greatest endoglucanase (0.28 U/mL) and β-glucosidase (0.12 U/mL) activities. Both enzymatic activities were characterized for the effect of pH, temperature and thermostability. The optimal parameters of β-glucosidase and endoglucanase activity were pH 5 and 4 respectively, the optimum temperature 60 °C. These enzymes were stable at 50 °C for 150.68 h and 8.54 h, with an activation energy (Ea(day)) of 265.55 kJ/mol and 44.40 kJ/mol respectively, for β-glucosidase and endoglucanase.

Conclusion

The present work shows that a native strain like F. verticillioides ITV03 using DSSB supplemented with nitrogen has a great potential as a producer of cellulase for lignocellulosic residue hydrolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

source on endoglucanase activity in each Box–Behnken design treatment

Fig. 2

source on cellulase production. a Effect of ammonium sulfate (g/L) versus urea (g/L), b Effect of yeast extract (g/L) versus urea (g/L) and c Effect of yeast extract (g/L) versus ammonium sulfate (g/L)

Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amore A, Giacobbe S, Faraco V (2013) Regulation of cellulase and hemicellulase gene expression in fungi. Curr Genomics 14(4):230–249

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arantes V, Saddler JN (2011) Cellulose accessibility limits the effectiveness of minimum cellulase loading on the efficient hydrolysis of pretreated lignocellulosic substrates. Biotechnol Biofuels 4(1):3. https://doi.org/10.1186/1754-6834-4-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aro N, Pakula T, Penttila M (2005) Transcriptional regulation of plant cell wall degradation by filamentous fungi. FEMS Microbiol Rev 29(4):719–739

    CAS  PubMed  Google Scholar 

  • Behera SS, Ray RC (2016) Solid state fermentation for production of microbial cellulases: recent advances and improvement strategies. Int J Biol Macromol 86:656–669

    CAS  PubMed  Google Scholar 

  • Bhatti HN, Batool S, Afzal N (2013) Production and characterization of a novel β -glucosidase from Fusarium solani. Int J Agric Biol 15(1):140–144

    CAS  Google Scholar 

  • Boudabbous M, Hmad IB, Saibi W, Mssawra M, Belghith H, Gargouri A (2017) Trans-glycosylation capacity of a highly glycosylated multi-specific β-glucosidase from Fusarium solani. Bioprocess Biosys Eng 40(4):559–571

    CAS  Google Scholar 

  • Comite Nacional para el Desarrollo Sustentable de la caña de azúcar. https://siiba.conadesuca.gob.mx/Archivos_Externos/6to_informe_estad%C3%ADstico.pdf

  • Christakopoulos P, Goodenough PW, Kekos D, Macris BJ, Claeyssens M, Bhat MK (1994) Purification and characterisation of an extracellular β-glucosidase with transglycosylation and exo-glucosidase activities from Fusarium oxysporum. Eur J Biochem 224(2):379–385

    CAS  PubMed  Google Scholar 

  • Christakopoulos P, Kekos D, Kolisis FN, Macris BJ (1995) Controlling simultaneous production of endoglucanase and beta-glucosidase by Fusarium oxysporum in submerged culture. Biotechnol Lett 17(8):883–888

    CAS  Google Scholar 

  • Cordero-Ramírez JD, López-Rivera R, Calderón-Vázquez CL, Figueroa-López AM, Martínez-Álvarez JC, Leyva-Madrigal KY, Maldonado-Mendoza IE (2012) Microorganismos asociados a la rizósfera de jitomate en un agroecosistema del valle de Guasave, Sinaloa. México Rev Mex Biodiv 83(3):712–773

    Google Scholar 

  • Das A, Paul T, Ghosh P, Halder SK, Mohapatra PK, Paty BR, Mondal KC (2015) Kinetic study of a glucose tolerant β-glucosidase from Aspergillus fumigatus ABK9 entrapped into alginate beads. Waste Biomass Valoriz 6(1):53–61

    Google Scholar 

  • de Almeida MN, Guimarães VM, Bischoff KM, Falkoski DL, Pereira OL, Goncalves DS, de Rezende ST (2011) Cellulases and hemicellulases from endophytic Acremonium species and its application on sugarcane bagasse hydrolysis. Appl Biochem Biotechnol 165(2):594–610

    PubMed  Google Scholar 

  • de Almeida MN, Falkoski DL, Guimarães VM, Ramos HJDO, Visser EM, Maitan-alfenas GP, Rezende ST (2013) Characteristics of free endoglucanase and glycosidases multienzyme complex from Fusarium verticillioides. Bioresour Technol 143:413–422

    PubMed  Google Scholar 

  • de Almeida MN, Falkoski DL, Guimarães VM, de Rezende ST (2019) Study of gamba grass as carbon source for cellulase production by Fusarium verticillioides and its application on sugarcane bagasse saccharification. Ind Crops Prod 133:33–43

    Google Scholar 

  • Deb Dutta S, Tarafder M, Islam R, Datta B (2018) Characterization of cellulolytic enzymes of Fusarium soil Isolates. Biocatal Agric Biotechnol 14:279–285

    Google Scholar 

  • Debeire P, Delalande F, Habrylo O, Jeltsch JM, Van Dorsselaer A, Phalip V (2014) Enzymatic cocktails produced by Fusarium graminearum under submerged fermentation using different lignocellulosic biomasses. FEMS Microbiol Lett 355(2):116–123

    CAS  PubMed  Google Scholar 

  • Ferreira JA, Mahboubi A, Lennartsson PR, Taherzadeh MJ (2016) Waste biorefineries using filamentous ascomycetes fungi : Present status and future prospects. Bioresoure Technol 215:334–345

    CAS  Google Scholar 

  • Gao Z, Van Hop D, Ando K, Hiyamuta S, Kondo R (2012) The production of β -glucosidases by Fusarium proliferatum NBRC109045 isolated from Vietnamese forest. AMB Express 2(1):49. https://doi.org/10.1186/2191-0855-2-49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geisseler D, Horwath WR, Joergensen RG, Ludwig B (2010) Pathways of nitrogen utilization by soil microorganisms: a review. Soil Biol Biochem 42(12):2058–2067

    CAS  Google Scholar 

  • Gutiérrez-Rojas I, Moreno-Sarmiento N, Montoya D (2015) Mecanismos y regulación de la hidrólisis enzimática de celulosa en hongos filamentosos: casos clásicos y nuevos modelos. Rev Iberoam Micol 32(1):1–12

    PubMed  Google Scholar 

  • Grand View Research (2020–2027) Enzymes Market Size, Share and Trends Analysis Report By Application (Industrial Enzymes, Specialty Enzymes), By Product (Carbohydrase, Proteases, Lipases), By Source, By Region, And Segment Forecasts. https://www.grandviewresearch.com/industry-analysis/enzymes-industry

  • Jahangeer S, Khan N, Jahangeer S, Sohail M, Shahzad S, Ahmad A, Khan SA (2005) Screening and characterization of fungal cellulases isolated from the native environmental source. Pak J Bot 37(3):739–748

    Google Scholar 

  • Kikot GE, Hours RA, Alconada TM (2010) Extracellular enzymes of Fusarium graminearum isolates. Braz Arch Biol Technol 53(4):779–783

    CAS  Google Scholar 

  • Kim D, Cho EJ, Kim JW, Lee Y, Chung H (2014) Production of cellulases by Penicillium sp. in a solid- state fermentation of oil palm empty fruit bunch. Afr J Biotechnol 13(1):145–155

    CAS  Google Scholar 

  • Li YH, Ding M, Wang J, Xu GJ, Zhao F (2006) A novel thermoacidophilic endoglucanase, Ba-EGA, from a new cellulose-degrading bacterium, Bacillus sp. AC-1. App Microbiol Biotechnol 70(4):430–436

    CAS  Google Scholar 

  • Lynd LR, Weimer PJ, Van Zyl WH, Pretorius IS (2002) microbial cellulose utilization: Fundamentals and Biotechnology. Microbiol Mol Biol Rev 66(3):506–577

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maeda RN, da Silva M, Santa Anna LM, Pereira N (2010) Nitrogen source optimization for cellulase production by Penicillium funiculosum, using a sequential experimental design methodology and the desirability function. Appl Biochem Biotechnol 161(1–8):411–422

    CAS  PubMed  Google Scholar 

  • Marangoni AG (2003) Characterization of enzyme stability. In: Marangoni AG (ed) Enzyme kinetics: a modern approach. Wiley, New York, pp 140–157

    Google Scholar 

  • Marzluf GA (1997) Genetic regulation of nitrogen metabolism in the fungi. Microbiol Mol Biol Rev 61(1):17–32

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mason RL, Gunst RF, Hess JL (1989) Statistical design and analysis of experiments: with applications to engineering and science. Wiley, New York, pp 220–221

    Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31(3):426–428

    CAS  Google Scholar 

  • Olajuyigbe FM, Nlekerem CM, Ogunyewo OA (2016) Production and characterization of highly thermostable β-glucosidase during the biodegradation of methyl cellulose by Fusarium oxysporum. Biochem Res Int. https://doi.org/10.1155/2016/3978124

    Article  PubMed  PubMed Central  Google Scholar 

  • Panagiotou G, Kekos D, Macris BJ, Christakopoulos P (2003) Production of cellulolytic and xylanolytic enzymes by Fusarium oxysporum grown on corn stover in solid state fermentation. Ind Crops Prod 18(1):37–45

    CAS  Google Scholar 

  • Partida-Sedas G, Montes-García N, Carvajal-Zarrabal O, López-Zamora L, Gómez-Rodríguez J, Aguilar-Uscanga MG (2017) Optimization of hydrolysis process to obtain fermentable sugars from sweet sorghum bagasse using a Box–Behnken design. Sugar Tech 19(3):317–325

    CAS  Google Scholar 

  • Pessôa MG, Paulino BN, Cezar M, Mano R, Neri-numa IA, Molina G, Pastore GM (2017) Fusarium species a promising tool box for industrial biotechnology. Appl Microbiol Biotechnol 101(9):3493–3511

    PubMed  Google Scholar 

  • Ramanathan G, Banupriya S, Abirami D (2010) Production and optimization of cellulase from Fusarium oxysporum by submerged fermentation. J Sci Ind Res 69:454–459

    CAS  Google Scholar 

  • Ravalason H, Grisel S, Chevret D, Favel A, Berrin J, Sigoillot J, Herpoel-Gimbert I (2012) Fusarium verticillioides secretome as a source of auxiliary enzymes to enhance saccharification of wheat straw. Bioresoure Technol 114:589–596

    CAS  Google Scholar 

  • Robles-Barrios KF, Medina-Canales MG, Rodríguez-Tovar AV, Pérez NO (2015) Morphological and molecular characterization, enzyme production and pathogenesis of Fusarium temperatum in corn in Mexico. Can J Plant Pathol 37(4):495–505

    CAS  Google Scholar 

  • Saha BC (2004) Production, purification and properties of endoglucanase from a newly isolated strain of Mucor circinelloides. Process Biochem 39(12):1871–1876

    CAS  Google Scholar 

  • Saqib AAN, Hassan M, Khan NF, Baig S (2010) Thermostability of crude endoglucanase from Aspergillus fumigatus grown under solid state fermentation (SSF) and submerged fermentation (SmF). Process Biochem 45(5):641–646

    CAS  Google Scholar 

  • Servicio de Información Agroalimentaria y Pesquera. https://infosiap.siap.gob.mx:8080/agricola_siap_gobmx/ResumenProducto.do

  • Shahriarinour M, Wahab MNA, Ariff AB, Mustafa S, Mohamad R (2011) Effect of various pretreatments of oil palm empty fruit bunch fibres for subsequent use as substrate on the performance of cellulase production by Aspergillus terreus. BioResources 6(1):291–307

    CAS  Google Scholar 

  • Siddiqui KS, Saqib AAN, Rashid MH, Rajoka MI (1997) Thermostabilization of carboxymethylcellulase from Aspergillus niger by carboxyl group modification. Biotechnol Lett 19(4):325–329

    CAS  Google Scholar 

  • Singh A, Jasso RMR, Gonzalez-Gloria KD, Rosales M, Cerda RB, Aguilar CN, Ruiz HA (2019) The enzyme biorefinery platform for advanced biofuel production. Bioresoure Technol Rep 7:100257

    Google Scholar 

  • Singhania RR, Sukumaran RK, Rajasree KP, Mathew A, Gottumukkala L, Pandey A (2011) Properties of a major β-glucosidase-BGL1 from Aspergillus niger NII-08121 expressed differentially in response to carbon sources. Process Biochem 46(7):1521–1524

    CAS  Google Scholar 

  • Stoll VS, Blanchard JS (2009) Buffers: principles and practice. In: Burgess RR, Deutscher MP (eds) Guide to protein purification. Academic Press, Sydney, pp 43–56

    Google Scholar 

  • Suhre K, Claverie JM (2003) Genomic correlates of hyperthermostability, an update. J Biol Chem 278(19):17198–17202

    CAS  PubMed  Google Scholar 

  • Taylor TJ, Vaisman II (2010) Discrimination of thermophilic and mesophilic proteins. BMC Struct Biol 10:1–10

    Google Scholar 

  • Van Soest PJ, Robertson JB, Lewis BA (1991) Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci 74(10):3583–3597

    PubMed  Google Scholar 

  • Vázquez-Montoya EL, Castro-Ochoa LD, Maldonado-Mendoza IE, Luna-Suárez S, Castro-Martínez C (2019) Moringa straw as cellulase production inducer and cellulolytic fungi source. Rev Argent Microbiol 52(1):4–12

    PubMed  Google Scholar 

  • White TJ, Burns T, Lee S, Taylor TW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfald DH, Sninsky JJ, White TJ (eds) PCR protocol: a guide to methods and application. Academic Press, New York, pp 315–322

    Google Scholar 

  • Xiros C, Topakas E, Katapodis P, Christakopoulos P (2008) Evaluation of Fusarium oxysporum as an enzyme factory for the hydrolysis of brewer’s spent grain with improved biodegradability for ethanol production. Ind Crops Prod 8:213–224

    Google Scholar 

  • Yan TR, Lin CL (1997) Purification and characterization of a glucose-tolerant β-glucosidase from Aspergillus niger CCRC 31494. Biosci Biotechnol Biochem 61(6):965–970

    CAS  PubMed  Google Scholar 

  • Yazdi MT, Khosravi AA, Nemati M, Motlagh NDV (2003) Purification and characterization of two intracellular β-glucosidases from the Neurospora crassa mutant cell-1. World J Microbiol Biotechnol 19(1):79–84

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the economic support from the Sectoral Fund for Research in Agricultural, Livestock, Aquaculture, Agrobiotechnology and Plant Genetic Resources and the National Council of Science and Technology, Mexico (SAGARPA-CONACyT, Project 291143 and PN-4650) and the TecNM, project 6853.18P; also the critical reading of Patricia Margaret Hayward-Jones, M Sc and Dulce María Barradas-Dermitz, M Sc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Guadalupe Aguilar-Uscanga.

Ethics declarations

Conflict of interest

The authors declare no financial or commercial conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Infanzón-Rodríguez, M.I., Ragazzo-Sánchez, J.A., del Moral, S. et al. Production and characterization of an enzyme extract with cellulase activity produced by an indigenous strain of Fusarium verticillioides ITV03 using sweet sorghum bagasse. Biotechnol Lett 42, 2271–2283 (2020). https://doi.org/10.1007/s10529-020-02940-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-020-02940-y

Keywords

Navigation