Skip to main content
Log in

Coupling multi-body dynamics and fluid dynamics to model lubricated spherical joints

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

A new approach of coupling multibody dynamics and fluid dynamics is developed to model hydrodynamic lubrication of spherical clearance joints with thin fluid film and relative multidirectional motion. The model accounts for dynamics motion of articulating components as well as both squeeze- and wedge-film actions of the synovial fluid. Multibody dynamics methodology is employed to derive the motion equations and Reynolds equation governs the fluid dynamics. The finite difference method is utilized to discretize the governing equation of lubricant and the multi-grid method augments computational efficiency to acquire outcomes employing a Gauss–Seidel relaxation scheme. Fluid–structure interaction is incorporated into the methodology using a partitioned formulation embedded in a high-order Runge–Kutta time integrators for integrating the nonlinear equations of the coupled system over time of interest. A demonstrative example of total hip arthroplasty is considered and the developed model is assessed against outcomes available in the literature. The effect of initial conditions on the pressure, film thickness and dynamics of the lubricated spherical joint is analyzed and discussed. It is illustrated that maximum fluid pressure is undergone by the hip implant at the first walking cycle of movement due to an unstable state, which is strongly dependent upon the initial condition. Finally, the approach presented in this research work is a robust dynamic model to study hydrodynamic lubrication of spherical joints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

Cl :

Clearance size

D :

Non-dimensional hydrodynamic parameter

\({\mathbf {e}}=\left( e_{x}{,}e_{y}{,}e_{z} \right) \) :

The eccentricity vector in Cartesian coordinate system

\(e=\left\| {\mathbf {e}} \right\| \) :

The size of eccentricity vector

\({\dot{e}}\) :

The time rate of the size of the eccentricity vector

\({\mathbf {e}}_{r_{e}}\), \({\mathbf {e}}_{\theta _{e}}\) and \({\mathbf {e}}_{\varphi _{e}}\) :

The local orthogonal unit vectors at the head center

\({\mathbf {e}}_{r}\), \({\mathbf {e}}_{\theta }\), \({\mathbf {e}}_{\varphi }\) :

The local orthogonal unit vectors

\({\mathbf {F}}\) :

The force vector

\({\mathbf {f}=}\left( f_{x}{,}f_{y}{,}f_{z} \right) \) :

Physiological force vector and its components

\({\mathbf {f}}^{\mu }=\left( f_{x}^{\mu }{,}f_{y}^{\mu }{,}f_{z}^{\mu } \right) \) :

Friction force vector

\({\mathbf {f}}^{L}=\left( f_{x}^{L}{,}f_{y}^{L}{,}f_{z}^{L} \right) \) :

Resultant fluid force vector

h :

Fluid-film thickness

\(h_{{\min }}\) :

Minimum film thickness

\({\bar{H}}\) :

The element size of the coarse mesh

L :

An operator

\({\mathbf {M}}\) :

The mass matrix of the system

\(O_{b}\) and \(O_{c}\) :

Centers of the femoral head and cup, respectively

P :

Fluid pressure

\({\bar{P}} \) :

A constant pressure

P :

Normalized fluid pressure

\({}_{i}^{n} p,i=1\ldots 6\) :

The normalized pressure profile at time \(t_{n}\) and the ith increment calculation in the Cash–Karp method

\(\ddot{\mathbf{q}}\) :

The acceleration vector

\(Q_{h}\) and \(Q_{c}\) :

The points on the head and cup surfaces, respectively

\(R_{c}\) :

The radius of the cup

\(\mathbf {r}_{{i}{,}{j}}^{{\bar{h}}}\) :

Residual magnitude

t :

Time (s)

\(U_{\theta }\) and \(U_{\varphi }\) :

The tangential velocity components at any point, e.g. \(Q_{h}\)

\(v_{i{,}j}^{{\bar{h}}}\) :

Error magnitude

\({\mathbf {V}}_{O_{h}}\) :

The velocity vector of the head center

\({\mathbf {V}}_{Q_{h}}\) :

The velocity vector at point \(Q_{h}\)

\({\mathbf {V}}_{Q_{h}}^{n}\) :

Normal velocity vector at point \(Q_{h}\)

\({\mathbf {V}}_{Q_{h}}^{t}\) :

Tangential velocity vector at point \(Q_{h}\)

\({\mathbf {V}}_{Q_{h}{/}O_{h}}\) :

The velocity vector of point \(Q_{h}\) with respect to the head center

\(e_{x}\), \(e_{y}\), \(e_{z}\) :

Coordinates of the center of the femoral head

\(\mathbf{y }_{n}\) :

The state variable of the system at time \(t_{n}\)

\(\beta \) :

The cup angle

\(\theta \) and \(\varphi \) :

Azimuthal and polar angles

\(\theta _{e}\) and \(\varphi _{e}\) :

Azimuthal and polar angles of the eccentricity vector

\(\Delta \theta \) and \({\Delta }\varphi \) :

Element size in azimuthal and polar directions

\({\Delta }t\) :

The size of time step

\({\varvec{\Omega }} =(\omega _{x},\omega _{y},\omega _{z})\) :

Angular velocity vector

\(\mu \) :

Lubricant viscosity

\(\tau _{\theta }\) and \(\tau _{\varphi }\) :

Shear stresses

\({\varvec{\nabla }} \) :

Del (nabla) in the spherical coordinate system

References

  1. Shabana, A.A.: Computational Dynamics, 3rd edn. Wiley, New York (2010)

    MATH  Google Scholar 

  2. Nikravesh, P.E.: Computer-Aided Analysis of Mechanical Systems. Prentice-Hall, Englewood Cliffs (1988)

    Google Scholar 

  3. Zhao, B., Cui, Y., Xie, Y., Zhou, K.: Dynamics and lubrication analyses of a planar multibody system with multiple lubricated joints. Proc. IMechE Part J: J. Eng. Tribol. 232(3), 326–346 (2018)

    Google Scholar 

  4. Pinkus, O., Sternlicht, S.A.: Theory of Hydrodynamic Lubrication. McGraw-Hill, New York (1961)

    MATH  Google Scholar 

  5. Daniel, G.B., Machado, T.H., Cavalca, K.L.: Investigation on the influence of the cavitation boundaries on the dynamic behavior of planar mechanical systems with hydrodynamic bearings. Mech. Mach. Theory 99, 19–36 (2016)

    Google Scholar 

  6. Tian, Q., Lou, J., Mikkola, A.: A new elastohydrodynamic lubricated spherical joint model for rigid-flexible multibody dynamics. Mech. Mach. Theory 107, 210–228 (2017)

    Google Scholar 

  7. Reynolds, O.: On the theory of lubrication and its application to Mr. Beauchamp Tower’s experiments, including an experimental determination of the viscosity of olive oil. Philos. Trans. R. Soc. Lond. (1886)

  8. Hamrock, B.J.: Fundamentals of Fluid Film Lubrication. McGraw-Hill, New York (1994)

    Google Scholar 

  9. Hou, G., Wang, J., Layton, A.: Numerical methods for fluid-structure interaction—a review. Commun. Comput. Phys. 12(2), 337–377 (2012)

    MathSciNet  MATH  Google Scholar 

  10. Dowell, E.H., Hall, K.C.: Modeling of fluid–structure interaction. Annu. Rev. Fluid Mech. 33, 445–490 (2001)

    MATH  Google Scholar 

  11. Chakrabarti, S.K.: Numerical Models in Fluid Structure Interaction, Advances in Fluid Mechanics, vol. 42. WIT Press, Cambridge (2005)

    MATH  Google Scholar 

  12. Malvandi, A., Ghasemi, A., Nikbakhti, R., Ghasemi, A., Hedayati, F.: Modeling and parallel computation of the non-linear interaction of rigid bodies with incompressible multi-phase flow. Comput. Math. Appl. 72, 1055–1065 (2016)

    MathSciNet  MATH  Google Scholar 

  13. Flores, P., Ambrósio, J., Claro, J.P.: Dynamic analysis for planar multibody mechanical systems with lubricated joints. Multibody Syst. Dyn. 12, 47–74 (2004)

    MATH  Google Scholar 

  14. Tian, Q., Zhang, Y.Q., Chen, L.P., Flores, P.: Dynamics of spatial flexible multibody systems with clearance and lubricated spherical joints. Comput. Struct. 87, 913–929 (2009)

    Google Scholar 

  15. Flores, P., Lankarani, H.M.: Spatial rigid-multi-body systems with lubricated spherical clearance joints: modeling and simulation. Nonlinear Dyn. 60(1–2), 99–114 (2010)

    MATH  Google Scholar 

  16. Daniel, G.B., Cavalca, K.L.: Analysis of the dynamics of a slider-crank mechanism with hydrodynamic lubrication in the connecting rod-slider joint clearance. Mech. Mach. Theory 46, 1434–1452 (2011)

    MATH  Google Scholar 

  17. Zhang, H., Zhang, X., Zhan, Z., Yang, L.: Dynamic modeling and comparative analysis of a 3-PRR parallel robot with multiple lubricated joints. Int. J. Mech. Mater. Des. (2019). https://doi.org/10.1007/s10999-019-09479-5

    Article  Google Scholar 

  18. Fang, C., Meng, X., Lu, Z., Wue, G., Tang, D., Zhao, B.: Modeling a lubricated full-floating pin bearing in planar multibody systems. Tribol. Int. 131, 222–237 (2016)

    Google Scholar 

  19. Zhuang, X., Afshari, S.S., Yu, T., Liang, X.: A hybrid model for wear prediction of a single revolute joint considering a time-varying lubrication condition. Wear (2019). https://doi.org/10.1016/j.wear.2019.203124

    Article  Google Scholar 

  20. Denni, M., Biboulet, N., Abousleiman, V., Lubrecht, A.A.: Dynamic study of a roller bearing in a planetary application considering the hydrodynamic lubrication of the roller/cage contact. Tribol. Int. (2019). https://doi.org/10.1016/j.triboint.2019.03.054

    Article  Google Scholar 

  21. Andersen, M.S., Damsgaard, M., MacWilliams, B., Rasmussen, J.: A computationally efficient optimisation-based method for parameter identification of kinematically determinate and over-determinate biomechanical systems. Comput. Methods Biomech. Biomed. Eng. 13, 171–183 (2010)

    Google Scholar 

  22. Ambrosio, J.: Rigid and flexible multibody dynamics tools for the simulation of systems subjected to contact and impact conditions. Eur. J. Solids A/Solids 19, S23–44 (2000)

    Google Scholar 

  23. Stops, A., Wilcox, R., Jin, Z.: Computational modelling of the natural hip: a review of finite element and multibody simulations. Comput. Methods Biomech. Biomed. Eng. 15(9), 963–979 (2012)

    Google Scholar 

  24. Askari, E., Flores, P., Dabirrahmani, D., Appleyard, R.: Dynamic modeling and analysis of wear in spatial hard-on-hard couple hip replacements using multibody systems methodologies. Nonlinear Dyn. 82, 1039–1058 (2015)

    MathSciNet  Google Scholar 

  25. Askari, E., Flores, P., Dabirrahmani, D., Appleyard, R.: Nonlinear vibration and dynamics of ceramic on ceramic artificial hip joints: a spatial multibody modelling. Nonlinear Dyn. 76(2), 1365–1377 (2014)

    MathSciNet  Google Scholar 

  26. Kang, J.: Numerical calculation of hip squeak over the normal gait cycle. Int. J. Precis. Eng. Manuf. 20, 2205–2214 (2019)

    Google Scholar 

  27. Kurtz, S., Ong, K., Lau, E., Mowat, F., Halpern, M.: Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J. Bone Joint Surg. 89(4), 780–785 (2007)

    Google Scholar 

  28. Canadian Joint Replacement Registry: Annual Report. Canadian institute for health information, Canada (2014)

  29. NJR 10th Annual Report 2013, National Joint Registry UK

  30. Askari, E., Flores, P., Dabirrahmani, D., Appleyard, R.: A review of squeaking in ceramic total hip prostheses. Tribol. Int. 93, 239–256 (2016)

    Google Scholar 

  31. Goenka, P.K., Booker, J.F.: Spherical bearings: static and dynamics analysis via the finite element method. ASME J. Lubr. Technol. 102(7), 308–319 (1980)

    Google Scholar 

  32. Ai, X., Cheng, H.S.: Hydrodynamic lubrication analysis of metallic hip joint. Tribol. Trans. 39(1), 103–111 (1996)

    MathSciNet  Google Scholar 

  33. Jin, Z.M., Dowson, D.: A full numerical analysis of hydrodynamic lubrication in artificial hip joint replacements constructed from hard materials. Proc. IMECHE J. Mech. Eng. 213(4), 355–370 (1999)

    Google Scholar 

  34. Jagatia, M., Jin, Z.M.: Elastohydrodynamic lubrication analysis of metal-on-metal hip prostheses under steady state entraining motion. Proc. IMECHE J. Eng. Med. 215(H6), 531–541 (2001)

    Google Scholar 

  35. Jagatia, M., Jalali-Vahid, D., Jin, Z.M.: Elastohydrodynamic lubrication analysis of UHMWPE hip joint replacements under squeeze-. lm motion. Proc. Inst. Mech. Eng. Part H: J. Eng. Med. 215(H2), 141–152 (2001)

    Google Scholar 

  36. Gao, L., Dowson, D., Hewson, R.W.: A numerical study of non-Newtonian transient elastohydrodynamic lubrication of metal-on-metal hip prostheses. Tribol. Int. 93, 486–494 (2016)

    Google Scholar 

  37. Gao, L., Fisher, J., Jin, Z.: Effect of walking patterns on the elastohydrodynamic lubrication of metal-on-metal total hip replacements. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 225, 515–525 (2011)

    Google Scholar 

  38. Gao, L., Wang, F.C., Yang, P.R., Jin, Z.M.: Effect of 3D physiological loading and motion on elastohydrodynamic lubrication of metal-on-metal total hip replacements. Med. Eng. Phys. 31, 720–729 (2009)

    Google Scholar 

  39. Sonntag, R., Reinders, J., Rieger, J.S., Heitzmann, D.W.W., Kretzer, J.P.: Hard-on-hard lubrication in the artificial hip under dynamic loading conditions. PLoS ONE 8, e71622 (2013)

    Google Scholar 

  40. Jin, Z.M.: Theoretical studies of elastohydrodynamic lubrication of artificial hip joints. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 220, 719–727 (2006)

    Google Scholar 

  41. Jalali-Vahid, D., Jin, Z.M.: Transient elastohydrodynamic lubrication analysis of UHMWPE hip joint replacements. J. Mech. Eng. Sci. Proc. Inst. Mech. Eng. 216(C4), 409–420 (2002)

    Google Scholar 

  42. Liu, F., Jin, Z.M., Grigoris, P., Hirt, F., Rieker, C.: Steady-state elastohydrodynamic lubrication analysis of a metal-on-metal hip implant employing a metallic cup with an ultra-high molecular weight polyethylene backing. J. Eng. Med. Proc. Inst. Mech. Eng. 218, 261–270 (2004)

    Google Scholar 

  43. Wang, F.C., Jin, Z.M.: Prediction of elastic deformation of acetabular cup and femoral head for lubrication analysis of artificial hip joints. J. Eng. Tribol. Proc. Inst. Mech. Eng. 218, 201–209 (2004)

    Google Scholar 

  44. Askari, E., Andersen, M.S.: A modification on velocity terms of Reynolds equation in a spherical coordinate system. Tribol. Int. 131, 15–23 (2019)

    Google Scholar 

  45. Ruggiero, A., Sicilia, A.: Lubrication modeling and wear calculation in artificial hip joint during the gait. Tribol. Int. 142, 105993 (2020)

    Google Scholar 

  46. Weiss, C., Hothan, A., Huber, G., Morlock, M., Hoffmann, N.: Friction-induced whirl vibration: root cause of squeaking in total hip arthroplasty. J. Biomech. 45, 297–303 (2012)

    Google Scholar 

  47. Askari, E., Flores, P., Dabirrahmani, D., Appleyard, R.: Study of the friction-induced vibration and contact mechanics of artificial hip joints. Tribol. Int. 70, 1–10 (2014)

    Google Scholar 

  48. Bergmann, G., Bender, A., Dymke, J., Duda, G., Damm, P.: Standardized loads acting in hip implants. PloS ONE 11(5), e0155612 (2016)

    Google Scholar 

  49. Bergmann, G., Deuretzbacher, G., Heller, M., Graichen, F., Rohlmann, A., Strauss, J., et al.: Hip contact forces and gait patterns from routine activities. J. Biomech. 34(7), 859–871 (2001)

    Google Scholar 

  50. Damm, P., Bender, A., Duda, G., Bergmann, G.: In vivo measured joint friction in hip implants during walking after a short rest. Plos ONE 12(3), E0174788 (2017)

    Google Scholar 

  51. Askari, E., Andersen, M.S.: A closed-form formulation for the conformal articulation of metal-on-polyethylene hip prostheses: contact mechanics and sliding distance. Proc. Inst. Mech. Eng. H J. Eng. Med. 232(12), 1–13 (2018)

    Google Scholar 

  52. Askari, E., Andersen, M.S.: A dynamic model of polyethylene damage in dry total hip arthroplasties: wear and creep. Multibody Syst. Dyn. 45, 403–429 (2019)

    MathSciNet  Google Scholar 

  53. Szeri, A.Z.: Fluid Film Lubrication: Theory and Design. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  54. Lubrecht, A.A., Ten Napel, W.E., Bosma, R.: Multigrid, an alternative method for calculating film thickness and pressure profiles in elastohydrodynamically lubricated line contacts. J. Tribol. Trans. ASME 108(4), 551–558 (1986)

    Google Scholar 

  55. Brandt, A.: Multi-level adaptive solutions to boundary-value problems. Math. Comput. 31(138), 333–390 (1977)

    MathSciNet  MATH  Google Scholar 

  56. Venner, CH.: Multilevel solution of the EHL line and point contact problems. PhD thesis, University of Twente, Enschede (N.L.) (1991)

  57. Kapitza, P.L.: Hydrodynamic theory of lubrication during rolling. Zh. Tekh. Fiz. 25(4), 747–762 (1955)

    Google Scholar 

  58. Tank, P.W., Gest, T.R.: Lippincott Williams and Wilkins Atlas of Anatomy. Wol-ters Kluwer Health/Lippincott Williams & Wilkins (2009)

  59. Mattei, L., Di Puccio, F., Piccigallo, B., Ciulli, E.: Lubrication and wear modelling of artificial hip joints: a review. Tribol. Int. 44(5), 532–549 (2011)

    Google Scholar 

  60. Stachowiak, G.W., Batchelor, A.W.: Engineering Tribology. Elsevier, Amsterdam (1993)

    Google Scholar 

  61. Stewart, T.D.: Tribology of artificial joints. Orthop. Trauma 24(6), 435–440 (2010)

    Google Scholar 

Download references

Acknowledgements

The authors would express their gratitude to Fundação para a Ciência e a Tecnologia (FCT) for the project “POCI-01-0145-FEDER-028424”, by FEDER funds through the COMPETE 2020 - Programa Operacional Competitividade e Internacionalização. They would also acknowledge FCT for the project with the reference number “UID/EEA/04436/2019”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehsan Askari.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Matrices in Eq. (6)

$$\begin{aligned} C_{1}^{i,j}= & {} \left( {\frac{\varepsilon _{i-0.5,j} }{\Delta \varphi ^{2}}} \right) \end{aligned}$$
(A1)
$$\begin{aligned} C_{2}^{i,j}= & {} -\frac{\varepsilon _{i-0.5,j} +\varepsilon _{i+0.5,j} }{\Delta \varphi ^{2}}\nonumber \\&\quad -\frac{\varepsilon _{i,j-0.5} sin\left( {\theta _{j-0.5} } \right) +\varepsilon _{i,j+0.5} sin\left( {\theta _{j+0.5} } \right) }{\Delta \theta ^{2}} \end{aligned}$$
(A2)
$$\begin{aligned} C_{3}^{i,j}= & {} \left( {\frac{\varepsilon _{i+0.5,j} }{\Delta \varphi ^{2}}} \right) \end{aligned}$$
(A3)
$$\begin{aligned} C_{4}^{i,j}= & {} sin\theta _{j} \left( {\frac{\varepsilon _{i,j-0.5} sin\left( {\theta _{j-0.5} } \right) }{\Delta \theta ^{2}}} \right) \end{aligned}$$
(A4)
$$\begin{aligned} C_{5}^{i,j}= & {} sin\theta _{j} \left( {\frac{\varepsilon _{i,j+0.5} sin\left( {\theta _{j+0.5} } \right) }{\Delta \theta ^{2}}} \right) \end{aligned}$$
(A5)
$$\begin{aligned} C_{6}^{i,j}= & {} -{\Omega }_{x} \left[ {\left( {sin\theta _{j} } \right) ^{2}sin\varphi _{i} \frac{H_{i,j} -H_{i,j-1} }{\Delta \theta }+sin\theta _{j} cos\theta _{j} cos\varphi _{i} \frac{H_{i,j} -H_{i-1,j} }{\Delta \varphi }} \right] \nonumber \\&\quad +{\Omega }_{y} \left[ {\left( {sin\theta _{j} } \right) ^{2}cos\varphi _{i} \frac{H_{i,j} -H_{i,j-1} }{\Delta \theta }-sin\theta _{j} cos\theta _{j} sin\varphi _{i} \frac{H_{i,j} -H_{i-1,j} }{\Delta \varphi }} \right] \nonumber \\&\quad +{\Omega }_{z} \left[ {\left( {sin\theta _{j} } \right) ^{2}\frac{H_{i,j} -H_{i-1,j} }{\Delta \varphi }} \right] \nonumber \\&\quad +2\left( {sin\theta _{j} } \right) ^{2}\frac{\partial H_{i,j} }{\partial T} \end{aligned}$$
(A6)

where

$$\begin{aligned} \varepsilon _{i,j+0.5} =\frac{\varepsilon _{i,j+1} +\varepsilon _{i,j} }{2} \end{aligned}$$
(A7)
$$\begin{aligned} \varepsilon _{i,j-0.5} =\frac{\varepsilon _{i,j-1} +\varepsilon _{i,j} }{2} \end{aligned}$$
(A8)
$$\begin{aligned} \varepsilon _{i+0.5,j} =\frac{\varepsilon _{i+1,j} +\varepsilon _{i,j} }{2} \end{aligned}$$
(A9)
$$\begin{aligned} \varepsilon _{i-0.5,j} =\frac{\varepsilon _{i-1,j} +\varepsilon _{i,j} }{2} \end{aligned}$$
(A10)
$$\begin{aligned} sin\left( {\theta _{j+0.5} } \right) =sin\left( {\frac{\theta _{j+1} +\theta _{j} }{2}} \right) \end{aligned}$$
(A11)
$$\begin{aligned} sin\left( {\theta _{j-0.5} } \right) =sin\left( {\frac{\theta _{j-1} +\theta _{j} }{2}} \right) \end{aligned}$$
(A12)

Appendix B: The multi-grid method

A fine mesh is commonly constructed to compute the lubricant pressure and film thickness using a relaxation method, e.g. Gauss-Seidel iterative method. However, such a solution method has two drawbacks: (1) a very slow convergence of the relaxation process especially for a large number of nodes; and (2) incapability to suppress error components in the solution that have wavelengths larger than the mesh size. The multigrid method allows us to accelerate the convergence of the relaxation process as well as suppress high wavelength errors by making use of coarse meshes within the original fine mesh. For further information about the multigrid method, the reader is referred to the following references [52,53,54]. The matrix form of Eq. (6) for a fine mesh with an even mesh size as \( \Delta \theta = \Delta \varphi ={{\bar{h}}}\), is recast as follows:

$$\begin{aligned} L^{{{\bar{h}}}}\left( {p^{{{\bar{h}}}}} \right) =C_{6}^{{{\bar{h}}}} \end{aligned}$$
(B1)

where superscript (\({{\bar{h}}})\) is to characterize its mesh size. Equation (B1) is commonly solved using a relaxation method, namely the Gauss-Seidel iterative methodology. Assume after a few sweeps, e.g. 2 or 3, an approximation, \({\tilde{p}}^{\bar{h}}\), to the solution \(p^{{{\bar{h}}}}\) is achieved. The corresponding residual is calculated as follows:

$$\begin{aligned} r^{{{\bar{h}}}}=C_{6}^{{{\bar{h}}}} -L\left( {{\tilde{p}}}^{\bar{h}} \right) \end{aligned}$$
(B2)

Assuming an exact solution for Eq. (B1) is \(p^{{{\bar{h}}}}\), the operator L is approximated in a proximity of \({\tilde{p}}\) as given by

$$\begin{aligned} L\left( {{\tilde{p}}} \right) =L\left( {{\tilde{p}}} \right) +\left. {\frac{\partial L}{\partial p}} \right| _{{\tilde{p}}} \left( {\bar{p}} -{{\tilde{p}}} \right) \end{aligned}$$
(B3)

As we are interested in the exact solution, \({\bar{p}}\), and know that the operator L is linear, the equation is recast as follows:

$$\begin{aligned} {{\bar{p}}}= & {} {\tilde{p}} + {\left( {{{\left. {\frac{{\partial L}}{{\partial p}}} \right| }_{{\tilde{p}}}}} \right) ^{ - 1}}\left( L\left( {{{\bar{p}}}} \right) \right. \left. - L\left( {{\tilde{p}}} \right) \right) = {\tilde{p}} + {\left( {{{\left. {\frac{{\partial L}}{{\partial p}}} \right| }_{{\tilde{p}}}}} \right) ^{ - 1}}L\left( {{{\bar{p}}} - {\tilde{p}}} \right) \nonumber \\= & {} {\tilde{p}} + {\left( {{{\left. {\frac{{\partial L}}{{\partial p}}} \right| }_{{\tilde{p}}}}} \right) ^{ - 1}}\left( {{C_6} - L\left( {{\tilde{p}}} \right) } \right) \end{aligned}$$
(B4)

in which the error is defined as \(v={\bar{p}}-{\tilde{p}}\). After discretizing the cup surface with a uniform mesh of the size \({{\bar{h}}}\), the error and residual can be written on the grid as

$$\begin{aligned} v_{i,j}^{{{\bar{h}}}}= & {} {{\bar{p}}}_{i,j}^{{{\bar{h}}}} - {\tilde{p}}_{i,j}^{{{\bar{h}}}} \end{aligned}$$
(B5)
$$\begin{aligned} r_{i,j}^{{{\bar{h}}}}= & {} {\left( {C_6^{{{\bar{h}}}} - L{{\left( {{\tilde{p}}} \right) }^{{{\bar{h}}}}}} \right) _{i,j}} \end{aligned}$$
(B6)

Substituting Eqs. (B5) and (B6) into Eq. (B4), the following equation can be written for the error

$$\begin{aligned} {L^{{{\bar{h}}}}}\left( {v_{i,j}^{{{\bar{h}}}}} \right) = r_{i,j}^{{{\bar{h}}}} \end{aligned}$$
(B7)

The right side of Eq. (B7) is known, so it would be solved for the error \(v_{i,j}^{{{\bar{h}}}} \) on the mesh grid. Using the Multigrid method enables us to solve Eq. (B7) for the error by switching the mesh from a fine mesh with the element size of \({{\bar{h}}}\) to a coarse mesh with the element size of 2\({{\bar{h}}}\) that is called \({\bar{H}}\). Numbers of nodes are converted using the following relations, \(i=2I-1\) and \(j=2J-1\), in order to obtaining the \(r_{I,J}^{{\bar{H}}} \), \((C_{6}^{{\bar{H}}} )_{I,J} \) and finally \((L\left( {{\tilde{p}}} \right) ^{{\bar{H}}})_{I,J} \) to rewrite Eq. (B7) in the coarse mesh grid, Eq. (B8).

$$\begin{aligned} L\left( v \right) _{I,J}^{{{\bar{H}}}} = r_{I,J}^{{{\bar{H}}}} \end{aligned}$$
(B8)

Equation (B8) is solved using the Gauss–Seidel iterative method until it converges and obtains the solution for the error, \({\bar{v}}^{{\bar{H}}}\). By this time, the error is written in the fine mesh grid using the following relations

$$\begin{aligned} {{{\bar{v}}}^{{{\bar{h}}}}}\left( {2I - 1,2J - 1} \right)= & {} {{{\bar{v}}}^{{{\bar{H}}}}}\left( {I,J} \right) \nonumber \\ {{{\bar{v}}}^{{{\bar{h}}}}}\left( {2I,2J - 1} \right)= & {} \frac{{{{{{\bar{v}}}}^{{{\bar{H}}}}}\left( {I,J} \right) + {{{{\bar{v}}}}^{{{\bar{H}}}}}\left( {I + 1,J} \right) }}{2} \nonumber \\ {{{\bar{v}}}^{{{\bar{h}}}}}\left( {2I - 1,2J} \right)= & {} \frac{{{{{{\bar{v}}}}^{{{\bar{H}}}}}\left( {I,J} \right) + {{{{\bar{v}}}}^{{{\bar{H}}}}}\left( {I,J + 1} \right) }}{2} \nonumber \\ {{{\bar{v}}}^{{{\bar{h}}}}}\left( {2I,2J} \right)= & {} \frac{{{{{{\bar{v}}}}^{{{\bar{H}}}}}\left( {I,J} \right) + {{{{\bar{v}}}}^{{{\bar{H}}}}}\left( {I + 1,J} \right) + {{{{\bar{v}}}}^{{{\bar{H}}}}}\left( {I,J + 1} \right) + {{{{\bar{v}}}}^{{{\bar{H}}}}}\left( {I + 1,J + 1} \right) }}{4} \end{aligned}$$
(B9)

Knowing \({\bar{v}}_{i,j}^{\bar{h}}\), the obtained error is added to the approximation for the solution, Eq. (B10). This process is repeated until the solution for Eq. (B1) converges.

$$\begin{aligned} {{\bar{p}}}_{i,j}^{new} = {{\bar{p}}}_{i,j}^{{{\bar{h}}}} + {{\bar{v}}}_{i,j}^{{{\bar{h}}}} \end{aligned}$$
(B10)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Askari, E., Flores, P. Coupling multi-body dynamics and fluid dynamics to model lubricated spherical joints. Arch Appl Mech 90, 2091–2111 (2020). https://doi.org/10.1007/s00419-020-01711-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-020-01711-5

Keywords

Navigation