Skip to main content
Log in

Partial Justification of the Peregrine Soliton from the 2D Full Water Waves

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

The Peregrine soliton \(Q(x,t)=e^{it}(1-\frac{4(1+2it)}{1+4x^2+4t^2})\) is an exact solution of the 1d focusing nonlinear Schrödinger equation (NLS) \(iB_t+B_{xx}=-2|B|^2B\), having the feature that it decays to \(e^{it}\) at the spatial and time infinities, and with peaks and troughs in a local region. It is considered as a prototype of the rogue wave by the ocean waves community. The 1D NLS is related to the full water wave system in the sense that asymptotically it is the envelope equation for full water waves. In this paper, working in the framework of water waves which decay non-tangentially, we give a rigorous justification of the NLS from the full water waves equation on long time scale in a regime that allows for the partial justification of the Peregrine soliton. As a byproduct, we prove the long time existence of solutions for the full water waves equation with small initial data in space of the form \(H^s(\mathbb {R})+H^{s'}(\mathbb {T})\), where \(s\geqq 4, s'>s+\frac{3}{2}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. By nonvanishing, we mean that the water wave is neither periodic nor at rest at spatial infinity.

  2. Indeed, we need only \(k> 0\). If \(k\ne \mathbb {N}\), then \(e^{ik\alpha }\notin H^s(\mathbb {T})\), instead, it is in \(H^s(\mathbb {T}/k)\). For simplicity, we take \(k\in \mathbb {N}\). The same argument applies directly to the cases that \(k\ne \mathbb {N}\).

  3. By localized waves. we mean those waves which are at rest at spatial infinity.

  4. The letter \(\mathcal {N}\) means nontangentially, while the letter \(\mathcal {P}\) means periodic.

  5. In this paper, by a function f decays at \(\infty \), we mean that \(f\in H^s(\mathbb {R})\) for some \(s\geqq 0\), even though it could be possible that \(\lim _{x\rightarrow \infty }f(x)\) does not exist.

  6. This is in \(\infty \)-norm sense, i.e., \(\Vert \zeta -\tilde{\zeta }\Vert _{W^{s,\infty }}=O(\varepsilon ^4)\). In \(X^s\) norm, \(\Vert \zeta -\tilde{\zeta }\Vert _{X^s}=O(\varepsilon ^{7/2})\).

  7. Here, the inner product on \(L^2(|\mathrm{d} \omega |)\) is given by \(\langle f, g\rangle _{L^2(|\mathrm{d}\omega |)}:=\int _{\mathbb {T}}f(\alpha )\overline{g(\alpha )}|\omega _{\alpha }|\mathrm{d}\alpha \).

  8. Note that \(\mathcal {H}_{\zeta }b\) and \(\mathcal {H}_{\omega }b_0\) are defined as BMO functions. Moreover, \(\mathcal {H}_{\zeta }b-\mathcal {H}_{\omega }b_0\in H^s(\mathbb {R})\). Similar properties hold for other quantities such as \(A, A_0\).

  9. See also the estimate for \(r_1\) in the next two sections. The estimates for \(r_0\) can be obtained parallel to the estimates for \(r_1\). The estimate for \(r_1\) is more involved and requires more careful analysis, so we present the details for the estimates of \(r_1\).

  10. The meaning of essentially positive should be clear from Lemma 9.2.

  11. Because \(U_2\) is completely determined by \(\omega \) and B, which are controlled over \(O(\varepsilon ^{-2})\) time scale.

  12. \((I-\mathcal {H}_{\zeta })\partial _{\alpha }^{n+1}\rho _1\) and \((I-\mathcal {H}_{\zeta })\overline{\partial _t\mathcal {R}_1^{(n)}}\) are boundary value of holomorphic functions in \(\Omega (t)^c\).

  13. Write \(r_1=\frac{1}{2}(I+\mathcal {H}_{\zeta })r_1+\frac{1}{2}(I-\mathcal {H}_{\zeta })r_1\). Use the argument in Lemma 8.3, we can show that \(\left\Vert \partial _{\alpha }(I+\mathcal {H}_{\zeta })r_1\right\Vert _{H^s}\leqq C(\varepsilon E_s^{1/2}+\varepsilon ^{5/2})\).

  14. Recall that \(\xi =\zeta -\alpha \), \(\tilde{\xi }=\tilde{\zeta }-\alpha \), \(\xi _0=\omega -\alpha \), and \(\tilde{\xi }_0=\tilde{\omega }-\alpha \).

  15. Let k be any nonzero constant, then the lemma still holds, but we need to replace \(W^{s'+1,\infty }(\mathbb {T})\) by \(W^{s'+1,\infty }(\frac{\mathbb {T}}{k})\)

References

  1. Alazard, J.-M., Delort, T.: Global solutions and asymptotic behavior for two dimensional gravity water waves. Ann. Sci. Éc. Norm. Supér. (4)48(5), 1149–1238, 2015

    MathSciNet  MATH  Google Scholar 

  2. Alazard, T., Burq, N., Zuily, C.: Cauchy theory for the gravity water waves system with non-localized initial data. Annales de l’Institut Henri Poincare (C) Non Linear Analysis33(2), 337–395, 2016

    ADS  MathSciNet  MATH  Google Scholar 

  3. Alazard, T., Burq, N., Zuily, C.: On the Cauchy problem for gravity water waves. Inventiones Mathematicae198(1), 71–163, 2014

    ADS  MathSciNet  MATH  Google Scholar 

  4. Alvarez-Samaniego, B., Lannes, D.: Large time existence for 3D water-waves and asymptotics. Inventiones Mathematicae171(3), 485–541, 2008

    ADS  MathSciNet  MATH  Google Scholar 

  5. Ambrose, D., Masmoudi, N.: The zero surface tension limit two-dimensional water waves. Commun. Pure Appl. Math. 58(10), 1287–1315, 2005

    MathSciNet  MATH  Google Scholar 

  6. Beale, J.T., Hou, Y., Lowengrub, J.S.: Growth rates for the linearized motion of fluid interfaces away from equilibrium. Commun. Pure Appl. Math. 46(9), 1269–1301, 1993

    MathSciNet  MATH  Google Scholar 

  7. Berti, M., Feola, R., Pusateri, F.: Birkhoff normal form and long time existence for periodic gravity water waves. 2018. arXiv preprint arXiv:1810.11549

  8. Bilman, D., Miller, P.D.: A robust inverse scattering transform for the focusing nonlinear Schrödinger equation. Commun. Pure Appl. Math. 2017. https://doi.org/10.1002/cpa.21819

    Article  MATH  Google Scholar 

  9. Birkhoff, G.: Helmholtz and Taylor instability. Proc. Symp. Appl. Math. 13, 55–76, 1962

    MathSciNet  MATH  Google Scholar 

  10. Castro, A., Córboda, D., Fefferman, C., Gancedo, F., Gómez-Serrano, J.: Finite time singularities for the free boundary incompressible euler equations. Ann. Math. 178, 1061–1134, 2013

    MathSciNet  MATH  Google Scholar 

  11. Castro, A., Córdoba, D., Fefferman, C., Gancedo, F., Gómez-Serrano, J.: Finite time singularities for water waves with surface tension. J. Math. Phys. 53(11), 115622, 2012

    ADS  MathSciNet  MATH  Google Scholar 

  12. Chabchoub, A., Hoffmann, N.P., Akhmediev, N.: Rogue wave observation in a water wave tank. Phys. Rev. Lett. 106, 204502, 2011

    ADS  Google Scholar 

  13. Christodoulou, D., Lindblad, H.: On the motion of the free surface of a liquid. Commun. Pure Appl. Math. 53(12), 1536–1602, 2000

    MathSciNet  MATH  Google Scholar 

  14. Coutand, D., Shkoller, S.: Well-posedness of the free-surface incompressible Euler equations with or without surface tension. J. Am. Math. Soc. 20(3), 829–930, 2007

    MathSciNet  MATH  Google Scholar 

  15. Coutand, D., Shkoller, S.: On the finite-time splash and splat singularities for the 3-D free-surface Euler equations. Commun. Math. Phys. 325(1), 143–183, 2014

    ADS  MathSciNet  MATH  Google Scholar 

  16. Coutand, D., Shkoller, S.: On the impossibility of finite-time splash singularities for vortex sheets. Arch. Ration. Mech. Anal. 221(2), 987–1033, 2016

    MathSciNet  MATH  Google Scholar 

  17. Craig, W.: An existence theory for water waves and the Boussinesq and Korteweg-deVries scaling limits. Commun. Partial Differ. Equ. 10(8), 787–1003, 1985

    MATH  Google Scholar 

  18. Craig, W., Sulem, C., Sulem, P.-L.: Nonlinear modulation of gravity waves: a rigorous approach. Nonlinearity5(2), 497, 1992

    ADS  MathSciNet  MATH  Google Scholar 

  19. Düll, W.-P., Schneider, G., Wayne, C.E.: Justification of the nonlinear Schrödinger equation for the evolution of gravity driven 2D surface water waves in a canal of finite depth. Arch. Ration. Mech. Anal. 220(2), 543–602, 2016

    MathSciNet  MATH  Google Scholar 

  20. Ebin, D.G.: The equations of motion of a perfect fluid with free boundary are not well posed. Commun. Partial Differ. Equ. 12(10), 1175–1201, 1987

    MathSciNet  MATH  Google Scholar 

  21. Gallo, C., et al.: Schrödinger group on Zhidkov spaces. Adv. Differ. Equ. 9(5–6), 509–538, 2004

    MATH  Google Scholar 

  22. Germain, P., Masmoudi, N., Shatah, J.: Global solutions for the gravity water waves equation in dimension 3. Ann. Math. 175, 691–754, 2012

    MathSciNet  MATH  Google Scholar 

  23. Hasimoto, H., Ono, H.: Nonlinear modulation of gravity waves. J. Phys. Soc. Jpn. 33(3), 805–811, 1972

    ADS  Google Scholar 

  24. Hunter, J.K., Ifrim, M., Tataru, D.: Two dimensional water waves in holomorphic coordinates. Commun. Math. Phys. 346(2), 483–552, 2016

    ADS  MathSciNet  MATH  Google Scholar 

  25. Ifrim, M., Tataru, D.: Two dimensional water waves in holomorphic coordinates II: global solutions. Bulletin de la Société Mathématique de France144(2), 369–394, 2016

    MathSciNet  MATH  Google Scholar 

  26. Ifrim, M., Tataru, D.: The NLS approximation for two dimensional deep gravity waves. Sci. China Math. 62(6), 1101–1120, 2019

    MathSciNet  MATH  Google Scholar 

  27. Iguchi, T.: Well-posedness of the initial value problem for capillary-gravity waves. Funkcialaj Ekvacioj Serio Internacia44(2), 219–242, 2001

    MathSciNet  MATH  Google Scholar 

  28. Ionescu, A.D., Pusateri, F.: Long-time existence for multi-dimensional periodic water waves. Geom. Funct. Anal. 29(3), 811–870, 2019

    MathSciNet  MATH  Google Scholar 

  29. Ionescu, A.D., Pusateri, F.: Global solutions for the gravity water waves system in 2D. Inventiones Mathematicae199(3), 653–804, 2015

    ADS  MathSciNet  MATH  Google Scholar 

  30. Kibler, B., Fatome, J., Finot, C., Millot, G., Dias, F., Genty, G., Akhmediev, N., Dudley, J.M.: The Peregrine soliton in nonlinear fibre optics. Nat. Phys. 6(10), 790–795, 2010

    Google Scholar 

  31. Kinsey, R.H., Sijue, W.: A priori estimates for two-dimensional water waves with angled crests. Camb. J. Math. 6(2), 93–181, 2018

    MathSciNet  MATH  Google Scholar 

  32. Lannes, D.: Well-posedness of the water-waves equations. J. Am. Math. Soc. 18(3), 605–654, 2005

    MathSciNet  MATH  Google Scholar 

  33. Levi-Civita, T.: Determination rigoureuse des ondes permanentes d’ampleur finie. Math. Ann. 93(1), 264–314, 1925

    MathSciNet  MATH  Google Scholar 

  34. Lindblad, H.: Well-posedness for the motion of an incompressible liquid with free surface boundary. Ann. Math. 162, 109–194, 2005

    MathSciNet  MATH  Google Scholar 

  35. Nalimov, V.I.: The Cauchy–Poisson problem. Dynamika Splosh, Sredy(18):104–210, 1974 (in Russian)

  36. Newton, I.: Philosophi naturalis principia mathematica

  37. Ogawa, M., Tani, A.: Free boundary problem for an incompressible ideal fluid with surface tension. Math. Models Methods Appl. Sci. 12(12), 1725–1740, 2002

    MathSciNet  MATH  Google Scholar 

  38. Peregrine, D.H.: Water waves, nonlinear Schrödinger equations and their solutions. J. Aust. Math. Soc. Ser. B Appl. Math. 25(1), 16–43, 1983

    MATH  Google Scholar 

  39. Schneider, G., Wayne, C.E.: The long-wave limit for the water wave problem I. The case of zero surface tension. Commun. Pure Appl. Math. 53(12), 1475–1535, 2000

    MathSciNet  MATH  Google Scholar 

  40. Schneider, G., Wayne, C.E.: Justification of the NLS approximation for a quasilinear water wave model. J. Differ. Equ. 251(2), 238–269, 2011

    ADS  MathSciNet  MATH  Google Scholar 

  41. Shatah, J., Zeng, C.: Geometry and a priori estimates for free boundary problems of the Euler’s equation. Commun. Pure Appl. Math. 61(5), 698–744, 2008

    MathSciNet  MATH  Google Scholar 

  42. Shrira, V.I., Geogjaev, V.V.: What makes the Peregrine soliton so special as a prototype of freak waves? J. Eng. Math. 67(1), 11–22, 2010

    MathSciNet  MATH  Google Scholar 

  43. Stoke, G.G.: On the theory of oscillatory waves. Trans. Camb. Philos. Soc. 8, 441–455, 1847

    Google Scholar 

  44. Su, Q.: Long time behavior of 2D water waves with point vortices. 2018. arXiv preprint arXiv:1812.00540

  45. Taylor, G.I.: The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I. Proc. R. Soc. Lond. A201(1065), 192–196, 1950

    ADS  MathSciNet  MATH  Google Scholar 

  46. Taylor, M.E.: Tools for PDE, volume of 81 Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI 2000

  47. Totz, N.: A justification of the modulation approximation to the 3D full water wave problem. Commun. Math. Phys. 335(1), 369–443, 2015

    ADS  MathSciNet  MATH  Google Scholar 

  48. Totz, N., Sijue, W.: A rigorous justification of the modulation approximation to the 2D full water wave problem. Commun. Math. Phys. 310(3), 817–883, 2012

    ADS  MathSciNet  MATH  Google Scholar 

  49. Wang, X.: Global infinite energy solutions for the 2D gravity water waves system. Commun. Pure Appl. Math. 71(1), 90–162, 2018

    MathSciNet  MATH  Google Scholar 

  50. Wu, S.: On a class of self-similar 2D surface water waves. 2012. arXiv:1206.2208

  51. Wu, S.: Well-posedness in sobolev spaces of the full water wave problem in 2-D. Inventiones Mathematicae130(1), 39–72, 1997

    ADS  MathSciNet  MATH  Google Scholar 

  52. Wu, S.: Well-posedness in sobolev spaces of the full water wave problem in 3-D. J. Am. Math. Soc. 12, 445–495, 1999

    MathSciNet  MATH  Google Scholar 

  53. Wu, S.: Almost global wellposedness of the 2-D full water wave problem. Inventiones Mathematicae177(1), 45, 2009

    ADS  MathSciNet  MATH  Google Scholar 

  54. Wu, S.: Global wellposedness of the 3-D full water wave problem. Inventiones Mathematicae184(1), 125–220, 2011

    ADS  MathSciNet  MATH  Google Scholar 

  55. Wu, S.: Wellposedness and singularities of the water wave equations. Lect. Theory Water Waves426, 171–202, 2016

    MathSciNet  MATH  Google Scholar 

  56. Wu, S.: Wellposedness of the 2D full water wave equation in a regime that allows for non-\(c^1\) interfaces. Inventiones Mathematicae217(2), 241–375, 2019

    ADS  MathSciNet  MATH  Google Scholar 

  57. Yosihara, H.: Gravity waves on the free surface of an incompressible perfect fluid of finite depth. RIMS Kyoto18, 49–96, 1982

    MathSciNet  MATH  Google Scholar 

  58. Zakharov, V.E.: Stability of periodic waves of finite amplitude on the surface of a deep fluid. J. Appl. Mech. Tech. Phys. 9(2), 190–194, 1968

    ADS  Google Scholar 

  59. Zhang, P., Zhang, Z.: On the free boundary problem of three-dimensional incompressible Euler equations. Commun. Pure Appl. Math. 61(7), 877–940, 2008

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank his Ph.D. advisor, Prof. Sijue Wu, for introducing him to this interesting topic, for many helpful discussions and invaluable comments. The author would like to thank the anonymous referee for many helpful suggestions. The author would like to thank Prof. Peter Miller and Prof. Rauch for intriguing discussions on rogue waves and NLS with nonzero boundary conditions. The author would also like to thank Fan Zheng and S. Shahshahani for invaluable comments, and Prof. Tao Luo for reading the draft of this paper. This work was partially supported by NSF Grant DMS-1361791.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingtang Su.

Additional information

Communicated by F. Lin

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A. Holomorphicity of Plane Waves

Let \(\zeta (\alpha )=\alpha +ce^{ik\alpha }, \alpha \in \mathbb {R}\), c is a small constant, \(k>0\), for simplicity, assume k is an integer. Let

$$\begin{aligned} \Gamma :=\{\zeta (\alpha ):\alpha \in \mathbb {R}\}. \end{aligned}$$

Then \(\Gamma \) is a graph. Let \(\Omega _+\) be the region above \(\Gamma \), and \(\Omega _-\) the region below \(\Gamma \). On one hand, it is easy to prove

Lemma A.1

\(\alpha \), \(e^{-ik\alpha }\) and \(e^{ik\alpha }\) are holomorphic in \(\Omega _+\).

On the other hand, we’ll show that \(e^{ik\alpha }\) cannot be a boundary value of a bounded holomorphic function in \(\Omega _-\).

Lemma A.2

If \(c\ne 0\), then \(e^{ik\alpha }\) cannot be a boundary value of a holomorphic function in \(\Omega _-\).

Proof

If \(e^{ik\alpha }\) is a boundary value of a holomorphic function in \(\Omega _-\), then \(e^{ik\alpha }\) is complete, and so \(\alpha \) is as well. Assume that \(\alpha =\Phi (\zeta (\alpha ))\), \(\Phi \) being complete. Let \(\Psi (\zeta )=\zeta +ce^{ik\zeta }\). Then \(\Psi \) is complete, and \(\Psi (\alpha )=\zeta (\alpha )\). Thus we have

$$\begin{aligned} {\left\{ \begin{array}{ll} \Psi \circ \Phi (\zeta (\alpha ))=\zeta (\alpha )\\ \Phi \circ \Psi (\alpha )=\alpha . \end{array}\right. } \end{aligned}$$

\(\Psi \circ \Phi \) and \(\Phi \circ \Psi \) are complete, so we must have \(\Psi \circ \Phi (z)\equiv z, \Phi \circ \Psi (z)\equiv z\). Thus \(\Psi \) and \(\Phi \) are the inverse of each other.

If \(c\ne 0\), then the function \(z+ce^{ikz}\) has an essential singularity at \(\infty \) because \(ce^{ikz}\) does. By Picard’s theorem, \(z+ce^{ikz}\) attains all values in \(\mathbb {C}\) infinitely many times with at most one exception. Suppose \(z_0\) is this exception, i.e., \(z+ce^{ikz}=z_0\) has finitely many solutions (possibly none). Then \(z+ce^{ikz}=z_0+2\pi \) has infinitely many solutions. Then

$$\begin{aligned} z-2\pi +ce^{ikz}=z_0 \quad \Rightarrow \quad z-2\pi +ce^{ik(z-2\pi )}=z_0. \end{aligned}$$

Thus \(z+ce^{ikz}=z_0\) has infinitely many solutions, which is a contradiction.

In particular, \(z+ce^{ikz}=0\) has infinitely many solutions. Thus \(\Psi \) is not invertible, which is a contradiction. \(\square \)

Lemma A.3

If \(e^{-ik\alpha }\) is boundary value of a holomorphic function in \(\Omega _-\), then \(e^{ik\alpha }\) is also holomorphic in \(\Omega _-\).

Proof

Let \(e^{-ik\alpha }=G(\zeta (\alpha ))\), where G is holomorphic in \(\Omega _-\). Then the zeros of G are a discrete set, which we denote by S. We’ll show that \(S=\emptyset \). Since \(\zeta =\alpha +ce^{ik\alpha }\), we have

$$\begin{aligned} \alpha =\zeta (\alpha )-\frac{c}{e^{-ik\alpha }}=\zeta (\alpha )-\frac{c}{G(\zeta (\alpha ))}. \end{aligned}$$

Define\(H(\zeta ):=\zeta -\frac{c}{G(\zeta )}, ~ \zeta \in \Omega _-\). Then H has boundary value \(\alpha \). Thus \(\alpha \) is boundary value of a meromorphic function in \(\Omega _-\), with poles at S.

Note that \(e^{-ikH(\zeta (\alpha ))}\) has boundary values \(e^{-ik\alpha }\), and \(e^{-ikH(\zeta )}\) is holomorphic in \(\Omega _-\setminus S\), by uniqueness extension of holomorphic functions, we must have \(e^{-ikH(\zeta )}=G(\zeta )\) on \(\Omega _-\setminus S\).

If \(S\ne \emptyset \), then take \(z_0\in S\). Then since \(G(z_0)\) is defined, \(z_0\) must be a removable singularity of \(e^{-ikH(\zeta )}\). However, since \(z_0\) is a pole of \(H(\zeta )\), so \(z_0\) is an essential singularity of \(e^{-ikH(\zeta )}\), which is a contradiction. Thus \(S=\emptyset \).

We conclude that \(\alpha \) is holomorphic in \(\Omega _-\), and so \(e^{ik\alpha }\) is holomorphic in \(\Omega _-\). \(\square \)

Corollary A.1

\(e^{-ik\alpha }\) cannot be the boundary value of a holomorphic function in \(\Omega _-\) if \(c\ne 0\).

Appendix B

As before, we use the periodic Hilbert transform to estimate the error term \(r_0\). The nonlocal Hilbert transform \(\mathcal {H}_{\omega }\) is used when we estimate the error term \(r_1\). Let’s denote \(\tilde{\mathfrak {H}}_p\) as the periodic Hilbert transform associated with \(\tilde{\omega }\).

1.1 B.1 Governing Equation for \(r_0\)

We have

$$\begin{aligned}&((D_t^0)^2-iA_0\partial _{\alpha })(I-\mathfrak {H}_p)r_0\\&\quad = ((D_t^0)^2-iA_0\partial _{\alpha })(I-\mathfrak {H}_p)\tilde{\omega }-2\left[ D_t^0\omega ,\mathfrak {H}_p\frac{1}{\omega _{\alpha }}+\bar{\mathfrak {H}}_p\frac{1}{\bar{\omega }_{\alpha }}\right] \partial _{\alpha }D_t^0\omega \\&\qquad +\,\frac{1}{ 4\pi i}\int _{\mathbb {T}} \Big (\frac{D_t^0\omega (\alpha ,t)-D_t^0\omega (\beta ,t)}{\sin (\frac{\pi }{2}(\omega (\alpha ,t)-\omega (\beta ,t)))}\Big )^2(\omega -\bar{\omega })(\beta )\mathrm{d}\beta \\&\quad := \mathcal {G}. \end{aligned}$$

We split \(\mathcal {G}\) as \(\mathcal {G}=\mathcal {G}_1+\mathcal {G}_2+\mathcal {G}_3+\mathcal {G}_4\), where

$$\begin{aligned} \mathcal {G}_1&:=((D_t^0)^2-iA_0\partial _{\alpha })(I-\mathfrak {H}_p)\tilde{\omega }-((\tilde{D}_t^0)^2-i\tilde{A}_0\partial _{\alpha })(I-\tilde{\mathfrak {H}}_p)\tilde{\omega }. \end{aligned}$$
(485)
$$\begin{aligned} \mathcal {G}_2&:=-2\left[ D_t^0\omega ,\mathfrak {H}_{p}\frac{1}{\omega _{\alpha }}+\bar{\mathfrak {H}}_{p}\frac{1}{\bar{\omega }_{\alpha }}\right] \partial _{\alpha }D_t^0\omega +2\left[ \tilde{D}_t^0\tilde{\omega },\tilde{\mathfrak {H}}_{p}\frac{1}{\tilde{\omega }_{\alpha }}+\bar{\tilde{\mathfrak {H}}}_{p}\frac{1}{\bar{\tilde{\omega }}_{\alpha }}\right] \partial _{\alpha }\tilde{D}_t^0\tilde{\omega }, \end{aligned}$$
(486)

and

$$\begin{aligned} \mathcal {G}_3:=&\frac{1}{4\pi i}\int _{\mathbb {T}} \Big (\frac{D_t^0\omega (\alpha ,t)-D_t^0\omega (\beta ,t)}{\sin (\frac{\pi }{2}(\omega (\alpha ,t)-\omega (\beta ,t)))}\Big )^2(\omega -\bar{\omega })(\beta )\mathrm{d}\beta \nonumber \\&-\,\frac{1}{4\pi i}\int _{\mathbb {T}}\Big (\frac{\tilde{D}_t^0\tilde{\omega }(\alpha ,t)-\tilde{D}_t^0\tilde{\omega }(\beta ,t)}{\sin \Big (\frac{\pi }{2}(\tilde{\omega }(\alpha ,t)-\tilde{\omega }(\beta ,t))\Big )}\Big )^2 (\tilde{\omega }-\bar{\tilde{\omega }})(\beta )\mathrm{d}\beta , \end{aligned}$$
(487)

and

$$\begin{aligned} \mathcal {G}_4:=&(\tilde{D}_t^0)^2-i\tilde{A}_0\partial _{\alpha })(I-\mathfrak {H}_p)\tilde{\omega }-2\left[ \tilde{D}_t^0\tilde{\omega },\tilde{\mathfrak {H}}_p\frac{1}{\tilde{\omega }_{\alpha }}+\bar{\tilde{\mathfrak {H}}}_p\frac{1}{\bar{\tilde{\omega }}_{\alpha }}\right] \partial _{\alpha }\tilde{D}_t^0\tilde{\omega }\nonumber \\&+\,\frac{1}{4\pi i}\int _{\mathbb {T}}\Big (\frac{\tilde{D}_t^0\tilde{\omega }(\alpha ,t)-\tilde{D}_t^0\tilde{\omega }(\beta ,t)}{\sin (\frac{\pi }{2}(\tilde{\omega }(\alpha ,t)-\tilde{\omega }(\beta ,t)))}\Big )^2 (\tilde{\omega }-\bar{\tilde{\omega }})(\beta )\mathrm{d}\beta . \end{aligned}$$
(488)

1.2 B.2 Governing Equation for \(D_t^0(I-\mathfrak {H}_p)r_0\)

We need to derive an equation to control \(D_t^0 r_0\) as well. We consider instead the quantity

$$\begin{aligned} \sigma _0:=(I-\mathfrak {H}_p)\Big \{D_t^0(I-\mathfrak {H}_p)(\omega -\alpha )-\tilde{D}_t^0(I-\tilde{\mathfrak {H}}_p)(\tilde{\omega }-\alpha )\Big \}. \end{aligned}$$

We have

$$\begin{aligned}&((D_t^0)^2-iA_0\partial _{\alpha })(I-\mathfrak {H}_p)D_t^0(I-\mathfrak {H}_p)(\omega -\alpha )\nonumber \\&\quad = -[(D_t^0)^2-iA_0\partial _{\alpha },\mathfrak {H}_p]D_t^0(I-\mathfrak {H}_p)(\omega -\alpha )\nonumber \\&\qquad +\,(I-\mathfrak {H}_p)((D_t^0)^2-iA_0\partial _{\alpha })D_t^0(I-\mathfrak {H}_p)(\omega -\alpha )\nonumber \\&\quad =-2[D_t^0\zeta ,\mathfrak {H}_p]\frac{\partial _{\alpha }(D_t^0)^2(I-\mathfrak {H}_p)(\omega -\alpha )}{\omega _{\alpha }}\nonumber \\&\qquad +\,\frac{1}{4\pi i}\int _{\mathbb {T}} \Big (\frac{D_t^0\omega (\alpha )-D_t^0\omega (\beta )}{\sin (\frac{\pi }{2}(\omega (\alpha )-\omega (\beta )))}\Big )^2 \partial _{\beta }D_t^0 (I-\mathfrak {H}_p)(\omega (\beta )-\beta )\mathrm{d}\beta \nonumber \\&\qquad +\,(I-\mathfrak {H}_p)[(D_t^0)^2-iA_0\partial _{\alpha }, D_t^0](I-\mathfrak {H}_p)(\omega -\alpha )+(I-\mathfrak {H}_p)D_t^0 \mathcal {G}, \end{aligned}$$
(489)

and

$$\begin{aligned}&((D_t^0)^2-iA_0\partial _{\alpha })(I-\mathfrak {H}_p)\tilde{D}_t^0(I-\tilde{\mathfrak {H}}_p)(\tilde{\omega }-\alpha )\nonumber \\&\quad = -[(D_t^0)^2-iA_0\partial _{\alpha },\mathfrak {H}_p]\tilde{D}_t^0(I-\tilde{\mathfrak {H}}_p)(\tilde{\omega }-\alpha )\nonumber \\&\qquad +\,(I-\mathfrak {H}_p)((D_t^0)^2-iA_0\partial _{\alpha })\tilde{D}_t^0(I-\tilde{\mathfrak {H}}_p)(\tilde{\omega }-\alpha )\nonumber \\&\quad =-2[D_t^0\omega ,\mathfrak {H}_p]\frac{\partial _{\alpha }D_t^0 \tilde{D}_t^0(I-\tilde{\mathfrak {H}}_p)(\tilde{\omega }-\alpha )}{\omega _{\alpha }}\nonumber \\&\qquad +\,\frac{1}{4\pi i}\int _{\mathbb {T}} \Big (\frac{D_t^0\omega (\alpha )-D_t^0\omega (\beta )}{\sin (\frac{\pi }{2}(\omega (\alpha )-\omega (\beta )))}\Big )^2 \partial _{\beta }\tilde{D}_t^0 (I-\tilde{\mathfrak {H}}_p)(\tilde{\omega }-\beta )(\beta )\mathrm{d}\beta \nonumber \\&\qquad +\,(I-\mathfrak {H}_p)((D_t^0)^2-iA_0\partial _{\alpha }) \tilde{D}_t^0(I-\tilde{\mathfrak {H}}_p)(\tilde{\omega }-\alpha )\nonumber \\&\quad = -2[D_t^0\omega ,\mathfrak {H}_p]\frac{\partial _{\alpha }D_t^0 \tilde{D}_t^0(I-\tilde{\mathfrak {H}}_p)(\tilde{\omega }-\alpha )}{\omega _{\alpha }}\nonumber \\&\qquad +\,\frac{1}{4\pi i}\int _{\mathbb {T}} \Big (\frac{D_t^0\omega (\alpha )-D_t^0\omega (\beta )}{\sin (\frac{\pi }{2}(\omega (\alpha )-\omega (\beta )))}\Big )^2 \partial _{\beta }\tilde{D}_t^0 (I-\tilde{\mathfrak {H}}_p)(\tilde{\omega }-\beta )(\beta )\mathrm{d}\beta \nonumber \\&\qquad +\,(I-\mathfrak {H}_p)((\tilde{D}_t^0)^2-i\tilde{A}_0\partial _{\alpha }) \tilde{D}_t^0(I-\tilde{\mathfrak {H}}_p)(\tilde{\omega }-\alpha )\nonumber \\&\qquad +\,(I-\mathfrak {H}_p)((D_t^0)^2-iA_0\partial _{\alpha }-(\tilde{D}_t^0)^2+i\tilde{A}_0\partial _{\alpha })\tilde{D}_t^0(I-\tilde{\mathfrak {H}}_p)(\tilde{\omega }-\alpha ). \end{aligned}$$
(490)

Using (489) and (490), we have that

$$\begin{aligned} ((D_t^0)^2-iA_0\partial _{\alpha })\sigma _0=\text {fourth order}. \end{aligned}$$
(491)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, Q. Partial Justification of the Peregrine Soliton from the 2D Full Water Waves. Arch Rational Mech Anal 237, 1517–1613 (2020). https://doi.org/10.1007/s00205-020-01535-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-020-01535-1

Navigation