Skip to main content
Log in

Stability of Multidimensional Thermoelastic Contact Discontinuities

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We study the system of nonisentropic thermoelasticity describing the motion of thermoelastic nonconductors of heat in two and three spatial dimensions, where the frame-indifferent constitutive relation generalizes that for compressible neo-Hookean materials. Thermoelastic contact discontinuities are characteristic discontinuities for which the velocity is continuous across the discontinuity interface. Mathematically, this renders a nonlinear multidimensional hyperbolic problem with a characteristic free boundary. We identify a stability condition on the piecewise constant background states and establish the linear stability of thermoelastic contact discontinuities in the sense that the variable coefficient linearized problem satisfies a priori tame estimates in the usual Sobolev spaces under small perturbations. Our tame estimates for the linearized problem do not break down when the strength of thermoelastic contact discontinuities tends to zero. The missing normal derivatives are recovered from the estimates of several quantities relating to physical involutions. In the estimate of tangential derivatives, there is a significant new difficulty, namely the presence of characteristic variables in the boundary conditions. To overcome this difficulty, we explore an intrinsic cancellation effect, which reduces the boundary terms to an instant integral. Then we can absorb the instant integral into the instant tangential energy by means of the interpolation argument and an explicit estimate for the traces on the hyperplane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alinhac, S.: Existence d’ondes de raréfaction pour des systèmes quasi-linéaires hyperboliques multidimensionnels. Commun. Partial Differ. Eqs. 14, 173–230, 1989. https://doi.org/10.1080/03605308908820595

    Article  MATH  Google Scholar 

  2. Alinhac, S., Gérard, P.: Pseudo-Differential Operators and the Nash-Moser Theorem. Translated from the 1991 French original by Stephen S. Wilson. American Mathematical Society, Providence (2007). https://doi.org/10.1090/gsm/082

  3. Benzoni-Gavage, S., Serre, D.: Multidimensional Hyperbolic Partial Differential Equations: First-Order Systems and Applications. Oxford University Press, Oxford (2007). https://doi.org/10.1093/acprof:oso/9780199211234.001.0001

  4. Chen, G.-Q., Feldman, M.: The Mathematics of Shock Reflection-Diffraction and von Neumann’s Conjectures. Princeton University Press, Princeton, NJ (2018). https://doi.org/10.2307/j.ctt1jktq4b

  5. Chen, G.-Q., Secchi, P., Wang, T.: Nonlinear stability of relativistic vortex sheets in three-dimensional Minkowski spacetime. Arch. Ration. Mech. Anal. 232, 591–695, 2019. https://doi.org/10.1007/s00205-018-1330-5

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, G.-Q., Wang, Y.-G.: Existence and stability of compressible current-vortex sheets in three-dimensional magnetohydrodynamics. Arch. Ration. Mech. Anal. 187, 369–408, 2008. https://doi.org/10.1007/s00205-007-0070-8

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, G.-Q., Wang, Y.-G.: Characteristic discontinuities and free boundary problems for hyperbolic conservation laws. In: Holden, H., Karlsen, K.H. (eds.) Nonlinear Partial Differential Equations, pp. 53–81. Springer, Heidelberg 2012. https://doi.org/10.1007/978-3-642-25361-4

    Chapter  Google Scholar 

  8. Chen, R.M., Hu, J., Wang, D.: Linear stability of compressible vortex sheets in two-dimensional elastodynamics. Adv. Math. 311, 18–60, 2017. https://doi.org/10.1016/j.aim.2017.02.014

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, R.M., Hu, J., Wang, D.: Linear stability of compressible vortex sheets in 2D elastodynamics: variable coefficients. Math. Ann. 376, 863–912, 2020. https://doi.org/10.1007/s00208-018-01798-w

    Article  MathSciNet  MATH  Google Scholar 

  10. Christoforou, C., Tzavaras, A.E.: Relative entropy for hyperbolic-parabolic systems and application to the constitutive theory of thermoviscoelasticity. Arch. Ration. Mech. Anal. 229, 1–52, 2018. https://doi.org/10.1007/s00205-017-1212-2

    Article  MathSciNet  MATH  Google Scholar 

  11. Christoforou, C., Galanopoulou, M., Tzavaras, A.E.: A symmetrizable extension of polyconvex thermoelasticity and applications to zero-viscosity limits and weak-strong uniqueness. Commun. Partial Differ. Eqs. 43, 1019–1050, 2018. https://doi.org/10.1080/03605302.2018.1456551

    Article  MathSciNet  MATH  Google Scholar 

  12. Christoforou, C., Galanopoulou, M., Tzavaras, A.E.: Measure-valued solutions for the equations of polyconvex adiabatic thermoelasticity. Discrete Contin. Dyn. Syst. 39, 6175–6206, 2019. https://doi.org/10.3934/dcds.2019269

    Article  MathSciNet  MATH  Google Scholar 

  13. Ciarlet, P.G.: Mathematical Elasticity. Three-Dimensional Elasticity, Vol. I. North-Holland Publishing Co., Amsterdam (1988). https://www.sciencedirect.com/bookseries/studies-in-mathematics-and-its-applications/vol/20/suppl/C

  14. Coleman, B.D., Noll, W.: The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Ration. Mech. Anal. 13, 167–178, 1963. https://doi.org/10.1007/BF01262690

    Article  MathSciNet  MATH  Google Scholar 

  15. Coulombel, J.-F., Secchi, P.: The stability of compressible vortex sheets in two space dimensions. Indiana Univ. Math. J. 53, 941–1012, 2004. https://doi.org/10.1512/iumj.2004.53.2526

    Article  MathSciNet  MATH  Google Scholar 

  16. Coulombel, J.-F., Secchi, P.: Nonlinear compressible vortex sheets in two space dimensions. Ann. Sci. Éc. Norm. Supér. 4(41), 85–139, 2008. https://doi.org/10.24033/asens.2064

    Article  MathSciNet  MATH  Google Scholar 

  17. Dafermos, C.M.: Quasilinear hyperbolic systems with involutions. Arch. Ration. Mech. Anal. 94, 373–389, 1986. https://doi.org/10.1007/BF00280911

    Article  MathSciNet  MATH  Google Scholar 

  18. Dafermos, C.M.: Hyperbolic Conservation Laws in Continuum Physics, 4th edn. Springer, Berlin (2016). https://doi.org/10.1007/978-3-662-49451-6

  19. Hu, X., Wang, D.: Global existence for the multi-dimensional compressible viscoelastic flows. J. Differ. Eqs. 250, 1200–1231, 2011. https://doi.org/10.1016/j.jde.2010.10.017

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Lei, Z., Liu, C., Zhou, Y.: Global solutions for incompressible viscoelastic fluids. Arch. Ration. Mech. Anal. 188, 371–398, 2008. https://doi.org/10.1007/s00205-007-0089-x

    Article  MathSciNet  MATH  Google Scholar 

  21. Métivier, G.: Stability of multidimensional shocks. In: Freistühler, H., Szepessy, A. (eds.) Advances in the Theory of Shock Waves, pp. 25–103. Birkhäuser, Boston 2001. https://doi.org/10.1007/978-1-4612-0193-9

  22. Morando, A., Trakhinin, Y., Trebeschi, P.: Well-posedness of the linearized problem for MHD contact discontinuities. J. Differ. Eqs. 258, 2531–2571, 2015. https://doi.org/10.1016/j.jde.2014.12.018

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Morando, A., Trakhinin, Y., Trebeschi, P.: Local existence of MHD contact discontinuities. Arch. Ration. Mech. Anal. 228, 691–742, 2018. https://doi.org/10.1007/s00205-017-1203-3

    Article  MathSciNet  MATH  Google Scholar 

  24. Qian, J., Zhang, Z.: Global well-posedness for compressible viscoelastic fluids near equilibrium. Arch. Ration. Mech. Anal. 198, 835–868, 2010. https://doi.org/10.1007/s00205-010-0351-5

    Article  MathSciNet  MATH  Google Scholar 

  25. Secchi, P.: Well-posedness of characteristic symmetric hyperbolic systems. Arch. Ration. Mech. Anal. 134, 155–197, 1996. https://doi.org/10.1007/BF00379552

    Article  MathSciNet  MATH  Google Scholar 

  26. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970). https://www.jstor.org/stable/j.ctt1bpmb07

  27. Tartar, L.: An Introduction to Sobolev Spaces and Interpolation Spaces. Springer, Berlin (2007). https://doi.org/10.1007/978-3-540-71483-5

  28. Trakhinin, Y.: The existence of current-vortex sheets in ideal compressible magnetohydrodynamics. Arch. Ration. Mech. Anal. 191, 245–310, 2009. https://doi.org/10.1007/s00205-008-0124-6

    Article  MathSciNet  MATH  Google Scholar 

  29. Trakhinin, Y.: Well-posedness of the free boundary problem in compressible elastodynamics. J. Differ. Eqs. 264, 1661–1715, 2018. https://doi.org/10.1016/j.jde.2017.10.005

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Truesdell, C., Toupin, R.: The classical field theories. With an appendix on tensor fields by J. L. Ericksen. In: Flügge, S. (ed.) Handbuch der Physik, Bd. III/1, pp. 226–793, appendix, pp. 794–858. Springer, Berlin (1960). https://doi.org/10.1007/978-3-642-45943-6

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Wang.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by P. Constantin

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research of Gui-Qiang G. Chen was supported in part by the UK Engineering and Physical Sciences Research Council Awards EP/E035027/1 and EP/L015811/1, and the Royal Society–Wolfson Research Merit Award (UK). The research of Paolo Secchi was supported in part by the Italy MIUR Project PRIN 2015YCJY3A-004. The research of Tao Wang was supported in part by the National Natural Science Foundation of China Grants 11971359 and 11731008.

Appendices

Appendix A: Proof of Proposition 2.1

Assume that \([{ S }]=0\) on \(\varGamma (t)\). Taking the scalar product of the last identity in (2.23) with N and utilizing (2.20e) yields that

$$\begin{aligned}&|N|^2\left( p(\rho ^+,S^+)-p(\rho ^-,S^+)\right) \\&\quad =|N|^2[p]= \rho ^+ F_{\ell N}^+[F_{\ell N}] =[\rho F_{\ell N}F_{\ell N}]=\sum _{j=1}^{d}(\rho ^+ F_{\ell N}^+)^2[ {\rho }^{-1}]. \end{aligned}$$

Then we infer from (2.11) and (2.22) that

$$\begin{aligned}{}[\rho ]=[p]=0, \end{aligned}$$

which, combined with (2.23), gives

$$\begin{aligned} F_{\ell N}^+[F_{\ell }]=0. \end{aligned}$$
(A.1)

Plug (2.20e) into (2.20f) to obtain

$$\begin{aligned} F_{kN}^{+}[F_{ij}]-F_{jN}^+[F_{ik}]=0 \qquad \,\,\text {for }i,j,k=1,\ldots ,d. \end{aligned}$$
(A.2)

For \(d=2\), from (A.1)–(A.2), we have

$$\begin{aligned} (F_{1N}^{+})^2[F_{i2}]+(F_{2N}^{+})^2[F_{i2}] =F_{2N}^{+} \left( F_{1N}^{+}[F_{i1}]+F_{2N}^{+}[F_{i2}] \right) =0, \end{aligned}$$

which, along with (2.22), yields \([F_{i2}]=0\) for \(i=1,2\). Then we utilize (A.2) again to obtain \([\varvec{F}]=0\) on \(\varGamma (t)\).

For \(d=3\), relations (A.2) are equivalent to

$$\begin{aligned} ( F_{1N}^+,\, F_{2N}^+,\, F_{3N}^+)^{{\mathsf {T}}}\times ([F_{i1}] ,\, [F_{i2}] ,\, [F_{i3}])^{{\mathsf {T}}}=0\qquad \,\text {for }i=1,2,3, \end{aligned}$$

which implies

$$\begin{aligned}{}[F_{ij}] =\omega _i F_{jN}^+ \end{aligned}$$
(A.3)

for some scalar functions \(\omega _i\) and for all \(i,j=1,2,3\). We plug (A.3) into (A.1) and utilize (2.22) to deduce that \(\omega _i\equiv 0\) for all \(i=1,\ldots ,d\). Then it follows from (A.3) that \([\varvec{F}]=0\) on \(\varGamma (t)\).

In view of the second condition in (2.23), we find that \([U]=0\) on \(\varGamma (t)\), i.e., the solution U is continuous across front \(\varGamma (t)\). Therefore, there is no thermoelastic contact discontinuity for the case \([S]=0\). This completes the proof of Proposition 2.1.

Appendix B: Proof of Proposition 2.2

We omit indices ± in several places below to avoid overloaded expressions.

1Proof of (2.35). In the original variables, we see from (2.15c) that

$$\begin{aligned} (\partial _t+v_{\ell } \partial _{\ell }) \det \varvec{F}&=\frac{\partial \det \varvec{F}}{\partial F_{ij}} (\partial _t+v_{\ell } \partial _{\ell }) F_{ij} =\det \varvec{F} (\varvec{F}^{-1})_{ji} F_{\ell j}\partial _{\ell } v_i \\&=\det \varvec{F} \delta _{\ell , i} \partial _{\ell } v_i=\det \varvec{F} \partial _{i} v_i, \end{aligned}$$

which, combined with the first equation in (2.5), yields

$$\begin{aligned} (\partial _t+v_{\ell } \partial _{\ell }) (\rho \det \varvec{F})=0. \end{aligned}$$

After transformation (2.29), we find

$$\begin{aligned} (\partial _t+w_{\ell } \partial _{\ell })(\rho \det \varvec{F})=0, \end{aligned}$$

where

$$\begin{aligned} w_1:=\frac{1}{\partial _1 \varPhi }\Big (v_1-\partial _t\varPhi -\sum _{j=2}^{d}v_j \partial _j\varPhi \Big ), \qquad w_i:=v_i \quad \text {for }i=2,\cdots ,d. \end{aligned}$$

Since \(w_1|_{x_1=0}=0\) resulting from (2.32b), we can obtain identity (2.35) by the standard energy method.

2Proof of (2.36). A straightforward calculation shows that solutions of (2.18) satisfy (see, e.g., the proof of QianZhang [24, Proposition 1])

$$\begin{aligned} (\partial _t+v_{\ell } \partial _{\ell })( {F}_{\ell k}\partial _{\ell }{F}_{ij}-{F}_{\ell j}\partial _{\ell }{F}_{i k}) =\partial _{m }v_i({F}_{\ell k}\partial _{\ell }{F}_{m j}-{F}_{\ell j}\partial _{\ell }{F}_{m k}). \end{aligned}$$

After transformation (2.29), we have

$$\begin{aligned} (\partial _t+w_{\ell } \partial _{\ell })M_{k,i,j}=\partial _{m }^{\varPhi }v_i M_{k,m, j} \end{aligned}$$

with \(M_{k,i,j}:={F}_{\ell k}\partial _{\ell }^{\varPhi }{F}_{ij}-{F}_{\ell j}\partial _{\ell }^{\varPhi }{F}_{ik}\). Here we recall the differentials with respect to (2.29) from definition (2.40). Similar to the proof of Hu–Wang [19, Lemma A.2], we can use integration by parts and \(w_1|_{x_1=0}=0\) to obtain (2.36).

3Proof of (2.37) and (2.39). In the original variables, system (2.15) gives

$$\begin{aligned}&(\partial _t+v_{\ell } \partial _{\ell })(\rho {F}_{ij})+\rho {F}_{ij} {\partial _{\ell } v_{\ell }}-\rho {F}_{\ell j}\partial _{\ell } v_i=0. \end{aligned}$$
(B.1)

After transformation (2.29), equation (B.1) becomes

$$\begin{aligned} (\partial _t+w_{\ell } \partial _{\ell } )(\rho {F}_{ij})+\rho {F}_{ij} \partial _{\ell }^{\varPhi } v_{\ell }-\rho {F}_{\ell j} \partial _{\ell }^{\varPhi } v_i=0. \end{aligned}$$
(B.2)

By virtue of (2.32b), we have

$$\begin{aligned} (\partial _t+w_{\ell } \partial _{\ell })\partial _i\varphi =\partial _i v\cdot N \qquad \,\, \text {on }\partial \varOmega ,\text { for }i=2,\ldots ,d. \end{aligned}$$

Then it follows from the restriction of (B.2) on \(\partial \varOmega \) that

$$\begin{aligned} (\partial _t+w_{\ell } \partial _{\ell } )(\rho {F}_{jN})+\rho {F}_{jN} \sum _{\ell =2}^d \partial _{\ell } v_{\ell }=0\qquad \, \text {on }\partial \varOmega . \end{aligned}$$
(B.3)

Since \(w_1|_{x_1=0}=0\) and \([v]=0\), we can derive (2.37) and (2.39) by employing the method of characteristics.

4Proof of (2.38). It follows from (B.3) that

$$\begin{aligned}&(\partial _t+w_{\ell } \partial _{\ell } )(\rho {F}_{kN} F_{ij} -\rho F_{jN} F_{ik}) -\rho {F}_{kN} (\partial _t+w_{\ell } \partial _{\ell } ) F_{ij}\\&\quad +\rho {F}_{jN} (\partial _t+w_{\ell } \partial _{\ell } ) F_{ik}+ \sum _{\ell =2}^d \partial _{\ell } v_{\ell } (\rho {F}_{kN}F_{ij} -\rho F_{jN}F_{ik})=0 \qquad \text {on }\partial \varOmega . \end{aligned}$$

Since

$$\begin{aligned} (\partial _t+w_{\ell } \partial _{\ell } ) F_{ij}=F_{\ell j}\partial _{\ell }^{\varPhi }v_i= \frac{\partial _1 v_i}{\partial _1 \varPhi } F_{jN}+\sum _{\ell =2}^d F_{\ell j}\partial _{\ell } v_i, \end{aligned}$$

we have

$$\begin{aligned} (\partial _t+w_{\ell } ^+\partial _{\ell } ) [I_{k,i,j}]+\sum _{\ell =2}^d \partial _{\ell } v_i^+ [ I_{j,\ell ,k}] + \sum _{\ell =2}^d \partial _{\ell } v_{\ell }^+ [I_{k,i,j}]=0 \qquad \text {on }\partial \varOmega , \end{aligned}$$

for \(I_{k,i,j}:=\rho {F}_{kN} F_{ij} -\rho F_{jN} F_{ik}\). Since (2.38) holds at the initial time, i.e., \([I_{k,i,j}]=0\) at \(t=0\) for \(i,j,k=1,\ldots ,d\), we employ the standard argument of the energy method to derive that (2.38) is satisfied for all \(t\in [0,T]\).

5Proof of (2.41). It suffices to prove (2.12) in the original variables. We note that (2.6)–(2.7) hold in virtue of (2.35)–(2.36) so that

$$\begin{aligned} \partial _{\ell }(\rho F_{\ell k})&= \partial _{\ell }((\det \varvec{F})^{-1} F_{\ell k})\\&=(\det \varvec{F})^{-1} \partial _{\ell } F_{\ell k}- (\det \varvec{F})^{-2} F_{\ell k}\frac{\partial \det \varvec{F}}{\partial F_{i j}} \partial _{\ell } F_{i j}\\&=(\det \varvec{F})^{-1} \left( \partial _{\ell } F_{\ell k}- (\varvec{F}^{-1})_{j i} F_{\ell k} \partial _{\ell } F_{i j} \right) \\&=(\det \varvec{F})^{-1} \left( \partial _{\ell } F_{\ell k}- (\varvec{F}^{-1})_{ j i} F_{\ell j} \partial _{\ell } F_{i k} \right) \\&=(\det \varvec{F})^{-1} \left( \partial _{\ell } F_{\ell k}- \delta _{\ell ,i} \partial _{\ell } F_{i k} \right) =0. \end{aligned}$$

This completes the proof of Proposition 2.2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, GQ.G., Secchi, P. & Wang, T. Stability of Multidimensional Thermoelastic Contact Discontinuities. Arch Rational Mech Anal 237, 1271–1323 (2020). https://doi.org/10.1007/s00205-020-01531-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-020-01531-5

Mathematics Subject Classification

Navigation