Skip to main content
Log in

A Categorical Duality for Semilattices and Lattices

  • Published:
Applied Categorical Structures Aims and scope Submit manuscript

Abstract

The main aim of this article is to develop a categorical duality between the category of semilattices with homomorphisms and a category of certain topological spaces with certain morphisms. The principal tool to achieve this goal is the notion of irreducible filter. Then, we apply this dual equivalence to obtain a topological duality for the category of bounded lattices and lattice homomorphism. We show that our topological dualities for semilattices and lattices are natural generalizations of the duality developed by Stone for distributive lattices through spectral spaces. Finally, we obtain directly the categorical equivalence between our topological spaces and those presented for Moshier and Jipsen (Algebra Univers 71(2):109–126, 2014).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bezhanishvili, G., Jansana, R.: Priestley style duality for distributive meet-semilattices. Stud. Log. 98(1–2), 83–122 (2011)

    Article  MathSciNet  Google Scholar 

  2. Celani, S.: Topological representation of distributive semilattices. Sci. Math. Jpn. 58(1), 55–66 (2003)

    MathSciNet  MATH  Google Scholar 

  3. Celani, S., Cabrer, L.: Topological duality for Tarski algebras. Algebra Univers. 58(1), 73–94 (2008)

    Article  MathSciNet  Google Scholar 

  4. Celani, S., Calomino, I.: Some remarks on distributive semilattices. Comment. Math. Univ. Carol. 54(3), 407–428 (2013)

    MathSciNet  MATH  Google Scholar 

  5. Celani, S., Calomino, I.: Stone style duality for distributive nearlattices. Algebra Univers. 71(2), 127–153 (2014)

    Article  MathSciNet  Google Scholar 

  6. Celani, S., González, L.J.: A topological duality for mildly distributive meet-semilattices. Rev. Un. Mat. Argent. 59(2), 265–284 (2018)

    Article  MathSciNet  Google Scholar 

  7. Celani, S., Montangie, D.: Hilbert algebras with a modal operator \(\diamond \). Stud. Log. 103(3), 639–662 (2015)

    Article  MathSciNet  Google Scholar 

  8. Davey, B., Priestley, H.: Introduction to Lattices and Order. Cambridge University Press, Cambridge (2002)

    Book  Google Scholar 

  9. David, E., Erné, M.: Ideal completion and Stone representation of ideal-distributive ordered sets. Topol. Appl. 44(1), 95–113 (1992)

    Article  MathSciNet  Google Scholar 

  10. Engelking, R.: General Topology, Sigma Series in Pure Mathematics, vol. 6, 2nd edn. Heldermann Verlag, Lemgo (1989)

  11. Esakia, L.: Topological Kripke models. Sov. Math. Dokl. 15, 147–151 (1974)

    MATH  Google Scholar 

  12. Esteban, M.: Duality theory and Abstract Algebraic Logic. Ph.D. thesis, Universitat de Barcelona (2013)

  13. Gillman, L., Jerison, M.: Rings of Continuous Functions. Van Nostrand, Amsterdam (1960)

    Book  Google Scholar 

  14. González, L.J., Jansana, R.: A spectral-style duality for distributive posets. Order 35(2), 321–347 (2018). https://doi.org/10.1007/s11083-017-9435-2

    Article  MathSciNet  MATH  Google Scholar 

  15. Grätzer, G.: Lattice Theory: Foundation. Springer, Berlin (2011)

    Book  Google Scholar 

  16. Hartonas, C., Dunn, M.: Stone duality for lattices. Algebra Univers. 37(3), 391–401 (1997)

    Article  MathSciNet  Google Scholar 

  17. Hartung, G.: A topological representation of lattices. Algebra Univers. 29(2), 273–299 (1992)

    Article  MathSciNet  Google Scholar 

  18. Hochster, M.: Prime ideal structure in commutative rings. Trans. Am. Math. Soc. 142, 43–60 (1969)

    Article  MathSciNet  Google Scholar 

  19. Jónsson, B., Tarski, A.: Boolean algebras with operators. Part I. Am. J. Math. 73(4), 891–939 (1951)

    Article  Google Scholar 

  20. Moshier, A., Jipsen, P.: Topological duality and lattice expansions, I: a topological construction of canonical extensions. Algebra Univers. 71(2), 109–126 (2014)

    Article  MathSciNet  Google Scholar 

  21. Picado, J., Pultr, A.: Frames and Locales: Topology Without Points, Frontiers in Mathematics. Birkhäuser, Basel (2012)

    Book  Google Scholar 

  22. Stone, M.H.: The theory of representation for Boolean algebras. Trans. Am. Math. Soc. 40(1), 37–111 (1936)

    MathSciNet  MATH  Google Scholar 

  23. Urquhart, A.: A topological representation theory for lattices. Algebra Univers. 8(1), 45–58 (1978)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We greatly appreciate the comments and suggestions made by the Referee that helped to improve the paper. We also would like to thank the Editor for valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciano J. González.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Jorge Picado.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was supported by Consejo Nacional de Investigaciones Científicas y Técnicas (Argentina) under the Grant PIP 112-20150-100412CO. The second author was also partially supported by Universidad Nacional de La Pampa under the Grant P.I. No 78 M, Res. 523/19.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Celani, S.A., González, L.J. A Categorical Duality for Semilattices and Lattices. Appl Categor Struct 28, 853–875 (2020). https://doi.org/10.1007/s10485-020-09600-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10485-020-09600-2

Keywords

Mathematics Subject Classification

Navigation