Skip to main content
Log in

Stationary-phase optimized selectivity in supercritical fluid chromatography using a customized Phase OPtimized Liquid Chromatography kit: comparison of different prediction approaches

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The use of stationary-phase optimized selectivity in liquid chromatography (SOS-LC) was shown to be successful for HPLC to analyze complex mixtures using a Phase OPtimized Liquid Chromatography (POPLC) kit. This commercial kit contains five stationary-phase types of varying lengths, which can be coupled to offer an improved separation of compounds. Recently, stationary-phase optimized selectivity supercritical fluid chromatography (SOS-SFC) has been introduced, transferring the methodology to SFC. In this study, the applicability of a customized POPLC expert kit for isocratic SFC runs was explored. Five stationary-phase chemistries were selected as potentially most suitable for achiral separations of polar compounds: aminopropyl (amino), cyanopropyl (CN), diol, ethylpyridine (EP), and silica. The retention factors (k) on the individual stationary phases were used for the prediction of the best stationary-phase combination, based on the POPLC algorithm (via the included software). As an alternative, the best column combination was predicted using multiple linear regression (MLR) models on the results obtained from a simplex centroid mixture design with only three stationary-phase types (amino, silica, and EP). A third approach applied the isocratic POPLC algorithm on the same three stationary-phase data. The proposed combinations were assembled and tested. The predicted and experimental retention factors were compared. The predictions based on the POPLC algorithm provided a stationary phase showing a complete separation of the mixture. The stationary phase suggested by the MLR models, on the other hand, showed co-elution of two compounds, due to an unexpected experimental retention shift. Overall, the customized POPLC kit showed good potential to be applied in SFC.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rajendran A. Design of preparative-supercritical fluid chromatography. J Chromatogr A. 2012;1250:227–49.

    CAS  PubMed  Google Scholar 

  2. Taylor LT. Supercritical fluid chromatography for the 21st century. J Supercrit Fluids. 2009;47:566–73.

    CAS  Google Scholar 

  3. Lesellier E, West C. The many faces of packed column supercritical fluid chromatography - a critical review. J Chromatogr A. 2015;1382:2–46.

    CAS  PubMed  Google Scholar 

  4. Majewski W, Valery E, Ludemann-Hombourger O. Principle and applications of supercritical fluid chromatography. J Liq Chromatogr Relat Technol. 2005;28:1233–52.

    CAS  Google Scholar 

  5. Wang C, Tymiak AA, Zhang Y. Optimization and simulation of tandem column supercritical fluid chromatography separations using column back pressure as a unique parameter. Anal Chem. 2014;86:4033–40.

    CAS  PubMed  Google Scholar 

  6. Berger TA, Wilson WH. Packed column supercritical fluid chromatography with 220 000 plates. Anal Chem. 1993;65:1451–5.

    CAS  Google Scholar 

  7. Pirkle WH, Welch CJ. Some thoughts on the coupling of dissimilar chiral columns or the mixing of chiral stationary phases for the separation of enantiomers. J Chromatogr A. 1996;731:322–6.

    CAS  Google Scholar 

  8. Gaudin K, Lesellier E, Chaminade P, Ferrier D, Baillet A, Tchapla A. Retention behaviour of ceramides in sub-critical fluid chromatography in comparison with non-aqueous reversed-phase liquid chromatography. J Chromatogr A. 2000;883:211–22.

    CAS  PubMed  Google Scholar 

  9. Lesellier E, West C, Tchapla A. Advantages of the use of monolithic stationary phases for modelling the retention in sub/supercritical chromatography: application to cis/trans-β-carotene separation. J Chromatogr A. 2003;1018:225–32.

    CAS  PubMed  Google Scholar 

  10. Deschamps FS, Lesellier E, Bleton J, Baillet A, Tchapla A, Chaminade P. Glycolipid class profiling by packed-column subcritical fluid chromatography. J Chromatogr A. 2004;1040:115–21.

    CAS  PubMed  Google Scholar 

  11. Barnhart WW, Gahm KH, Thomas S, Notari S, Semin D, Cheetham J. Supercritical fluid chromatography tandem-column method development in pharmaceutical sciences for a mixture of four stereoisomers. J Sep Sci. 2005;28:619–26.

    CAS  PubMed  Google Scholar 

  12. Welch CJ, Biba M, Gouker JR, Kath G, Augustine P, Hosek P. Solving multicomponent chiral separation challenges using a new SFC tandem column screening tool. Chirality. 2007;19:184–9.

    CAS  PubMed  Google Scholar 

  13. Abrahamsson V, Rodriguez-Meizoso I, Turner C. Determination of carotenoids in microalgae using supercritical fluid extraction and chromatography. J Chromatogr A. 2012;1250:63–8.

    CAS  PubMed  Google Scholar 

  14. Lesellier E, Latos A, de Oliveira AL. Ultra high efficiency/low pressure supercritical fluid chromatography with superficially porous particles for triglyceride separation. J Chromatogr A. 2014;1327:141–8.

    CAS  PubMed  Google Scholar 

  15. Phinney KW, Sander LC, Wise SA. Coupled achiral/chiral column techniques in subcritical fluid chromatography for the separation of chiral and nonchiral compounds. Anal Chem. 1998;70:2331–5.

    CAS  PubMed  Google Scholar 

  16. West C, Lemasson E, Bertin S, Hennig P, Lesellier E. Interest of achiral-achiral tandem columns for impurity profiling of synthetic drugs with supercritical fluid chromatography. J Chromatogr A. 2018;1534:161–9.

    CAS  PubMed  Google Scholar 

  17. Galea C, Mangelings D, Vander HY. Characterization and classification of stationary phases in HPLC and SFC - a review. Anal Chim Acta. 2015;886:1–15.

    CAS  PubMed  Google Scholar 

  18. Alvarez-Segura T, Torres-Lapasio JR, Ortiz-Bolsico C, Garcia-Alvarez-Coque MC. Stationary phase modulation in liquid chromatography through the serial coupling of columns: a review. Anal Chim Acta. 2016;923:1–23.

    CAS  PubMed  Google Scholar 

  19. Nyiredy S, Szucs Z, Szepesy L. Stationary phase optimized selectivity liquid chromatography: basic possibilities of serially connected columns using the “PRISMA” principle. J Chromatogr A. 2007;1157:122–30.

    CAS  PubMed  Google Scholar 

  20. Nyiredy S, Szűcs Z, Szepesy L. Stationary-phase optimized selectivity LC (SOS-LC): separation examples and practical aspects. Chromatographia. 2006;63:S3–9.

    CAS  Google Scholar 

  21. Kuehnle M, Rehbein J, Holtin K, Dietrich B, Gradl M, Yeman H, et al. Phase optimized liquid chromatography as an instrument for steroid analysis. J Sep Sci. 2008;31:1655–61.

    CAS  PubMed  Google Scholar 

  22. Matysik F, Schumann U, Engewald W. Isocratic liquid chromatography with segmented columns and simultaneous UV and dual electrochemical detection: application to the selectivity enhancement for the determination of explosives. Electroanalysis. 2008;20:98–101.

    CAS  Google Scholar 

  23. Zedda M, Tuerk J, Teutenberg T, Peil S, Schmidt TC. A strategy for the systematic development of a liquid chromatographic mass spectrometric screening method for polymer electrolyte membrane degradation products using isocratic and gradient phase optimized liquid chromatography. J Chromatogr A. 2009;1216:8910–7.

    CAS  PubMed  Google Scholar 

  24. Gostomski I, Braun R, Huber CG. Detection of low-abundance impurities in synthetic thyroid hormones by stationary phase optimized liquid chromatography-mass spectrometry. Anal Bioanal Chem. 2008;391:279–88.

    CAS  PubMed  Google Scholar 

  25. Deconinck E, Kamugisha A, Van Campenhout P, Courselle P, De Beer JO. Development of a stationary phase optimised selectivity liquid chromatography based screening method for adulterations of food supplements for the treatment of pain. Talanta. 2015;138:240–6.

    CAS  PubMed  Google Scholar 

  26. Deconinck E, Ghijs L, Kamugisha A, Courselle P. Comparison of three development approaches for stationary phase optimised selectivity liquid chromatography based screening methods part I: a heterogeneous group of molecules (slimming agents in food supplements). Talanta. 2016;148:518–28.

    CAS  PubMed  Google Scholar 

  27. Deconinck E, Ghijs L, Kamugisha A, Courselle P. Comparison of three development approaches for stationary phase optimised selectivity liquid chromatography based screening methods part II: a group of structural analogues (PDE-5 inhibitors in food supplements). Talanta. 2016;148:346–55.

    CAS  PubMed  Google Scholar 

  28. Deconinck E, Djiogo CAS, Kamugisha A, Courselle P. The use of stationary phase optimized selectivity liquid chromatography for the development of herbal fingerprints to detect targeted plants in plant food supplements. Talanta. 2017;170:441–50.

    CAS  PubMed  Google Scholar 

  29. De Beer M, Lynen F, Chen K, Ferguson P, Hanna-Brown M, Sandra P. Stationary-phase optimized selectivity liquid chromatography: development of a linear gradient prediction algorithm. Anal Chem. 2010;85:1733–43.

    Google Scholar 

  30. De Beer M, Lynen F, Hanna-Brown M, Sandra P. Multiple step gradient analysis in stationary phase optimised selectivity LC for the analysis of complex mixtures. Chromatographia. 2009;69:609–14.

    Google Scholar 

  31. Chen K, Lynen F, De Beer M, Hitzel L, Ferguson P, Hanna-Brown M, et al. Selectivity optimization in green chromatography by gradient stationary phase optimized selectivity liquid chromatography. J Chromatogr A. 2010;1217:7222–30.

    CAS  PubMed  Google Scholar 

  32. Hegade RS, De Beer M, Lynen F. Chiral stationary phase optimized selectivity liquid chromatography: a strategy for the separation of chiral isomers. J Chromatogr A. 2017;1515:109–17.

    CAS  PubMed  Google Scholar 

  33. Delahaye S, Lynen F. Implementing stationary-phase optimized selectivity in supercritical fluid chromatography. Anal Chem. 2014;86:12220–8.

    CAS  PubMed  Google Scholar 

  34. Hegade RS, Lynen F. Chiral stationary phase optimized selectivity supercritical fluid chromatography: a strategy for the separation of mix. J Chromatogr A. 2019;1586:116–27.

    CAS  PubMed  Google Scholar 

  35. Galea C, Mangelings D, Vander HY. Method development for impurity profiling in SFC: the selection of a dissimilar set of stationary phases. J Pharm Biomed Anal. 2015;111:333–43.

    CAS  PubMed  Google Scholar 

  36. D’Attoma A, Grivel C, Heinisch S. On-line comprehensive two-dimensional separations of charged compounds using reversed-phase high performance liquid chromatography and hydrophilic interaction chromatography. Part I: orthogonality and practical peak capacity considerations. J Chromatogr A. 2012;1262:148–59.

    PubMed  Google Scholar 

  37. Muscat Galea C, Mangelings D, Vander HY. Investigation of the effect of mobile phase composition on selectivity using a solvent-triangle based approach in achiral SFC. J Pharm Biomed Anal. 2017;132:247–57.

    CAS  PubMed  Google Scholar 

  38. Cornell JA. Experiments with mixtures: designs, models, and the analysis of mixture data. Third ed. New York: Wiley; 2002.

    Google Scholar 

  39. Piepel GF, Cornell JA. Mixture experiment approaches: examples, discussion, and recommendations. J Qual Technol. 1994;26:177–96.

    Google Scholar 

  40. Hamilton NE, Ferry M. ggtern: ternary diagrams using ggplot2. J Stat Softw. 2018;87:1–17.

    Google Scholar 

  41. Neue UD, O’Gara JE, Méndez A. Selectivity in reversed-phase separations: influence of the stationary phase. J Chromatogr A. 2006;1127:161–74.

    CAS  PubMed  Google Scholar 

  42. Romand S, Rudaz S, Guillarme D. Separation of substrates and closely related glucuronide metabolites using various chromatographic modes. J Chromatogr A. 2016;1435:54–65.

    CAS  PubMed  Google Scholar 

Download references

Funding

Y.G. is funded by a Ph. D. fellowship of the Research Foundation – Flanders (FWO) (grant 11D3518N). P.R. is funded by grant project SVV 260 548.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debby Mangelings.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection featuring Female Role Models in Analytical Chemistry.

Electronic supplementary material

ESM 1

(PDF 65.7 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grooten, Y., Riasová, P., Salsinha, I. et al. Stationary-phase optimized selectivity in supercritical fluid chromatography using a customized Phase OPtimized Liquid Chromatography kit: comparison of different prediction approaches. Anal Bioanal Chem 412, 6553–6565 (2020). https://doi.org/10.1007/s00216-020-02739-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02739-w

Keywords

Navigation