Skip to main content
Log in

An amperometric biosensor based on poly(l-aspartic acid), nanodiamond particles, carbon nanofiber, and ascorbate oxidase–modified glassy carbon electrode for the determination of l-ascorbic acid

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

An amperometric l-ascorbic acid biosensor utilizing ascorbate oxidase (AOx) immobilized onto poly(l-aspartic acid) (P(l-Asp)) film was fabricated on carbon nanofiber (CNF) and nanodiamond particle (ND)-modified glassy carbon electrode (GCE). Effects of AOx, ND, and CNF amounts were investigated by monitoring the response currents of the biosensor at different amounts of AOx, ND, and CNF. The electropolymerization step of l-aspartic acid on CNF-ND/GCE surface was also optimized. Scanning electron microscopy (SEM), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) techniques were used to enlighten the modification steps of the biosensor. The effects of pH and applied potential were studied in detail to achieve the best analytical performance. Under optimized experimental conditions, the AOx/P(L-Asp)/ND-CNF/GCE biosensor showed a linear response to l-ascorbic acid in the range of 2.0 × 10−7–1.8 × 10−3 M with a detection limit of 1.0 × 10−7 M and sensitivity of 105.0 μAmM−1 cm−2. The novel biosensing platform showed good reproducibility and selectivity. The strong interaction between AOx and the P(l-Asp)/ND-CNF matrix was revealed by the high repeatability (3.4%) and good operational stability. The AOx/P(l-Asp)/ND-CNF/GCE biosensor was successfully applied to the determination of l-ascorbic acid in vitamin C effervescent tablet and pharmaceutical powder containing ascorbic acid with good results, which makes it a promising approach for quantification of l-ascorbic acid.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Liu M, Wen Y, Xu J, He H, Li D, Yue R, et al. An amperometric biosensor based on ascorbate oxidase immobilized in poly (3,4-ethylenedioxythiophene)/multi-walled carbon nanotubes composite films for the determination of L-ascorbic acid. Anal Sci. 2011;27(5):477.

    Article  PubMed  Google Scholar 

  2. Prasad BB, Kumar D, Madhuri R, Tiwari MP. Ascorbic acid imprinted polymer-modified graphite electrode: a diagnostic sensor for hypovitaminosis C at ultra trace ascorbic acid level. Sens Actuators B Chem. 2011;160(1):418–27.

    Article  CAS  Google Scholar 

  3. Dhara K, Mahapatra DR. Review on nanomaterials-enabled electrochemical sensors for ascorbic acid detection. Anal Biochem. 2019;586:113415.

    Article  CAS  PubMed  Google Scholar 

  4. Chauhan N, Narang J, Pundir CS. Fabrication of multiwalled carbon nanotubes/polyaniline modified Au electrode for ascorbic acid determination. Analyst. 2011;136(9):1938–45.

    Article  CAS  PubMed  Google Scholar 

  5. Jain A, Chaurasia A, Verma KK. Determination of ascorbic acid in soft drinks, preserved fruit juices and pharmaceuticals by flow injection spectrophotometry: matrix absorbance correction by treatment with sodium hydroxide. Talanta. 1995;42(6):779–87.

    Article  CAS  PubMed  Google Scholar 

  6. Spínola V, Mendes B, Câmara JS, Castilho PC. An improved and fast UHPLC-PDA methodology for determination of L-ascorbic and dehydroascorbic acids in fruits and vegetables. Evaluation of degradation rate during storage. Anal Bioanal Chem. 2012;403(4):1049–58.

    Article  PubMed  CAS  Google Scholar 

  7. Kyaw AA. Simple colorimetric method for ascorbic acid determination in blood plasma. Clin Chim Acta. 1978;86(2):153–7.

    Article  CAS  PubMed  Google Scholar 

  8. Chen H, Li R, Lin L, Guo G, Lin JM. Determination of l-ascorbic acid in human serum by chemiluminescence based on hydrogen peroxide–sodium hydrogen carbonate–CdSe/CdS quantum dots system. Talanta. 2010;81(4–5):1688–96.

    Article  CAS  PubMed  Google Scholar 

  9. Fernández L, Carrero H. Electrochemical evaluation of ferrocene carboxylic acids confined on surfactant–clay modified glassy carbon electrodes: oxidation of ascorbic acid and uric acid. Electrochim Acta. 2005;50(5):1233–40.

    Article  CAS  Google Scholar 

  10. Kulys J, D’Costa EJ. Printed electrochemical sensor for ascorbic acid determination. Anal Chim Acta. 1991;243:173–8.

    Article  CAS  Google Scholar 

  11. Csiffáry G, Fűtő P, Adányi N, Kiss A. Ascorbate oxidase-based amperometric biosensor for L-ascorbic acid determination in beverages. Food Technol Biotechnol. 2016;54(1):31–5.

    PubMed  PubMed Central  Google Scholar 

  12. Chauhan N, Dahiya T, Pundir CS. Fabrication of an amperometric ascorbate biosensor using egg shell membrane bound Lagenaria siceraria fruit ascorbate oxidase. J Mol Catal B Enzym. 2010;67(1–2):66–71.

    Article  CAS  Google Scholar 

  13. Wen Y, Xu J, Liu M, Li D, He H. Amperometric vitamin C biosensor based on the immobilization of ascorbate oxidase into the biocompatible sandwich-type composite film. Appl Biochem Biotechnol. 2012;167(7):2023–38.

    Article  CAS  PubMed  Google Scholar 

  14. Li D, Wen Y, He H, Xu J, Liu M, Yue R. Polypyrrole–multiwalled carbon nanotubes composites as immobilizing matrices of ascorbate oxidase for the facile fabrication of an amperometric vitamin C biosensor. J Appl Polym Sci. 2012;126(3):882–93.

    Article  CAS  Google Scholar 

  15. Zhu Z, Garcia-Gancedo L, Flewitt AJ, Xie H, Moussy F, Milne WI. A critical review of glucose biosensors based on carbon nanomaterials: carbon nanotubes and graphene. Sensors. 2012;12(5):5996–6022.

    Article  PubMed  Google Scholar 

  16. Huang J, Liu Y, You T. Carbon nanofiber based electrochemical biosensors: a review. Anal Methods. 2010;2(3):202–11.

    Article  CAS  Google Scholar 

  17. Xie H, Luo G, Niu Y, Weng W, Zhao Y, Ling Z, et al. Synthesis and utilization of Co3O4 doped carbon nanofiber for fabrication of hemoglobin-based electrochemical sensor. Mater Sci Eng C. 2020;107:110209.

    Article  CAS  Google Scholar 

  18. Zhang J, Lei J, Liu Y, Zhao J, Ju H. Highly sensitive amperometric biosensors for phenols based on polyaniline–ionic liquid–carbon nanofiber composite. Biosens Bioelectron. 2009;24(7):1858–63.

    Article  CAS  PubMed  Google Scholar 

  19. Kumar S, Nehra M, Kedia D, Dilbaghi N, Tankeshwar K, Kim KH. Nanodiamonds: emerging face of future nanotechnology. Carbon. 2019;143:678–99.

    Article  CAS  Google Scholar 

  20. Zambianco NA, Silva TA, Zanin H, Fatibello-Filho O, Janegitz BC. Novel electrochemical sensor based on nanodiamonds and manioc starch for detection of diquat in environmental samples. Diam Relat Mater. 2019;98:107512.

    Article  CAS  Google Scholar 

  21. Schrand AM, Hens SAC, Shenderova OA. Nanodiamond particles: properties and perspectives for bioapplications. Crit Rev Solid State Mater Sci. 2009;34(1–2):18–74.

    Article  CAS  Google Scholar 

  22. Ramos MMV, Carvalho JH, de Oliveira PR, Janegitz BC. Determination of serotonin by using a thin film containing graphite, nanodiamonds and gold nanoparticles anchored in casein. Measurement. 2020;149:106979.

    Article  Google Scholar 

  23. Alshawafi WM, Aldhahri M, Almulaiky YQ, Salah N, Moselhy SS, Ibrahim IH, et al. Immobilization of horseradish peroxidase on PMMA nanofibers incorporated with nanodiamond. Artif Cells Nanomed Biotechnol. 2018;46(3):973–81.

    Article  CAS  Google Scholar 

  24. Wei L, Zhang W, Lu H, Yang P. Immobilization of enzyme on detonation nanodiamond for highly efficient proteolysis. Talanta. 2010;80(3):1298–304.

    Article  CAS  PubMed  Google Scholar 

  25. Kumar V, Kaur I, Arora S, Mehla R, Vellingiri K, Kim KH. Graphene nanoplatelet/graphitized nanodiamond-based nanocomposite for mediator-free electrochemical sensing of urea. Food Chem. 2020;303:125375.

    Article  CAS  PubMed  Google Scholar 

  26. Camargo JR, Baccarin M, Raymundo-Pereira PA, Campos AM, Oliveira GG, Fatibello-Filho O, et al. Electrochemical biosensor made with tyrosinase immobilized in a matrix of nanodiamonds and potato starch for detecting phenolic compounds. Anal Chim Acta. 2018;1034:137–43.

    Article  CAS  PubMed  Google Scholar 

  27. Mekassa B, Tessema M, Chandravanshi BS, Baker PG, Muya FN. Sensitive electrochemical determination of epinephrine at poly (L-aspartic acid)/electro-chemically reduced graphene oxide modified electrode by square wave voltammetry in pharmaceutics. J Electroanal Chem. 2017;807:145–53.

    Article  CAS  Google Scholar 

  28. Ates M. A review study of (bio) sensor systems based on conducting polymers. Mater Sci Eng C. 2013;33(4):1853–9.

    Article  CAS  Google Scholar 

  29. Mekassa B, Tessema M, Chandravanshi BS, Tefera M. Square wave voltammetric determination of ibuprofen at poly (L-aspartic acid) modified glassy carbon electrode. IEEE Sensors J. 2018;18(1):37–44.

    Article  CAS  Google Scholar 

  30. Yazdanparast S, Benvidi A, Abbasi S, Rezaeinasab M. Enzyme-based ultrasensitive electrochemical biosensor using poly (L-aspartic acid)/MWCNT bio-nanocomposite for xanthine detection: a meat freshness marker. Microchem J. 2019;149:104000.

    Article  CAS  Google Scholar 

  31. Zhang C, Li H, Yu Q, Jia L, Wan LY. Poly (aspartic acid) electrospun nanofiber hydrogel membrane-based reusable colorimetric sensor for Cu (II) and Fe (III) detection. ACS Omega. 2019;4(11):14633–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dalkıran B, Erden PE, Kaçar C, Kılıç E. Disposable amperometric biosensor based on poly-L-lysine and Fe3O4 NPs-chitosan composite for the detection of tyramine in cheese. Electroanalysis. 2019;31(7):1324–33.

    Article  CAS  Google Scholar 

  33. Chauhan N, Pundir CS. An amperometric uric acid biosensor based on multiwalled carbon nanotube–gold nanoparticle composite. Anal Biochem. 2011;413(2):97–103.

    Article  CAS  PubMed  Google Scholar 

  34. Shadjou N, Alizadeh S, Hasanzadeh M. Sensitive monitoring of taurine biomarker in unprocessed human plasma samples using a novel nanocomposite based on poly (aspartic acid) functionalized by graphene quantum dots. J Mol Recognit. 2018;31(12):e2737.

    Article  PubMed  CAS  Google Scholar 

  35. Bekmezci SA, Soylemez S, Yilmaz G, Udum YA, Yagci Y, Toppare L. A new ethanol biosensor based on polyfluorene-g-poly (ethylene glycol) and multiwalled carbon nanotubes. Eur Polym J. 2020;122:109300.

    Article  CAS  Google Scholar 

  36. Ding W, Wu M, Liang M, Ni H, Li Y. Sensitive hydrazine electrochemical biosensor based on a porous chitosan–carbon nanofiber nanocomposite modified electrode. Anal Lett. 2015;48(10):1551–69.

    Article  CAS  Google Scholar 

  37. Lisdat F, Schäfer D. The use of electrochemical impedance spectroscopy for biosensing. Anal Bioanal Chem. 2008;391(5):1555.

    Article  CAS  PubMed  Google Scholar 

  38. Li D, Wen YP, Xu JK, He HH, Liu M. An amperometric biosensor based on covalent immobilization of ascorbate oxidase on biocompatiable and low-toxic poly (thiophene-3-acetic acid) matrix. Chin J Polym Sci. 2012;30(5):705–18.

    Article  CAS  Google Scholar 

  39. Kaçar C, Erden PE, Dalkiran B, İnal EK, Kiliç E. Amperometric biogenic amine biosensors based on Prussian blue, indium tin oxide nanoparticles and diamine oxidase–or monoamine oxidase–modified electrodes. Anal Bioanal Chem. 2020;412(8):1933–46.

    Article  PubMed  CAS  Google Scholar 

  40. Nakamura T, Makino N, Ogura Y. Purification and properties of ascorbate oxidase from cucumber. J Biochem. 1968;64(2):189–95.

    Article  CAS  PubMed  Google Scholar 

  41. Wen Y, Xu J, Liu M, Li D, Lu L, Yue R, et al. A vitamin C electrochemical biosensor based on one-step immobilization of ascorbate oxidase in the biocompatible conducting poly (3,4-ethylenedioxythiophene)-lauroylsarcosinate film for agricultural application in crops. J Electroanal Chem. 2012;674:71–82.

    Article  CAS  Google Scholar 

  42. Carralero V, González-Cortés A, Yáñez-Sedeño P, Pingarrón JM. Amperometric IgG immunosensor using a tyrosinase-colloidal gold-graphite-Teflon biosensor as a transducer. Anal Lett. 2008;41(2):244–59.

    Article  CAS  Google Scholar 

  43. Kacar C, Erden PE, Kılıc E. Amperometric L-lysine enzyme electrodes based on carbon nanotube/redox polymer and graphene/carbon nanotube/redox polymer composites. Anal Bioanal Chem. 2017;409:2873–83.

    Article  CAS  PubMed  Google Scholar 

  44. Liu M, Wen Y, Li D, Yu R, Xu J, He H. A stable sandwich-type amperometric biosensor based on poly (3,4-ethylenedioxythiophene)–single walled carbon nanotubes/ascorbate oxidase/nafion films for detection of L-ascorbic acid. Sens Actuators B Chem. 2011;159(1):277–85.

    Article  CAS  Google Scholar 

  45. Dodevska T, Horozova E, Dimcheva N. Electrochemical behavior of ascorbate oxidase immobilized on graphite electrode modified with Au-nanoparticles. Mater Sci Eng B. 2013;178(20):1497–502.

    Article  CAS  Google Scholar 

  46. Wen YP, Lu LM, Li D, Liu M, He HH, Xu JK. Ascorbate oxidase electrochemical biosensor based on the biocompatible poly (3, 4-ethylenedioxythiophene) matrices for agricultural application in crops. Chin Chem Lett. 2012;23(2):221–4.

    Article  CAS  Google Scholar 

  47. Wu GH, Wu YF, Liu XW, Rong MC, Chen XM, Chen X. An electrochemical ascorbic acid sensor based on palladium nanoparticles supported on graphene oxide. Anal Chim Acta. 2012;745:33–7.

    Article  CAS  PubMed  Google Scholar 

  48. Li F, Tang C, Liu S, Ma G. Development of an electrochemical ascorbic acid sensor based on the incorporation of a ferricyanide mediator with a polyelectrolyte–calcium carbonate microsphere. Electrochim Acta. 2010;55(3):838–43.

    Article  CAS  Google Scholar 

  49. Yang P, Gao X, Wang L, Wu Q, Chen Z, Lin X. Amperometric sensor for ascorbic acid based on a glassy carbon electrode modified with gold-silver bimetallic nanotubes in a chitosan matrix. Microchim Acta. 2014;181(1–2):231–8.

    Article  CAS  Google Scholar 

  50. Babu TS, Varadarajan D, Murugan G, Ramachandran T, Nair BG. Gold nanoparticle–polypyrrole composite modified TiO2 nanotube array electrode for the amperometric sensing of ascorbic acid. J Appl Electrochem. 2012;42(6):427–34.

    Article  CAS  Google Scholar 

  51. Zhang H, Huang F, Xu S, Xia Y, Huang W, Li Z. Fabrication of nanoflower-like dendritic Au and polyaniline composite nanosheets at gas/liquid interface for electrocatalytic oxidation and sensing of ascorbic acid. Electrochem Commun. 2013;30:46–50.

    Article  CAS  Google Scholar 

  52. Lavanya J, Gomathi N. High-sensitivity ascorbic acid sensor using graphene sheet/graphene nanoribbon hybrid material as an enhanced electrochemical sensing platform. Talanta. 2015;144:655–61.

    Article  CAS  PubMed  Google Scholar 

  53. Harraz FA, Faisal M, Ismail AA, Al-Sayari SA, Al-Salami AE, Al-Hajry A, et al. TiO2/reduced graphene oxide nanocomposite as efficient ascorbic acid amperometric sensor. J Electroanal Chem. 2019;832:225–32.

    Article  CAS  Google Scholar 

  54. Pakapongpan S, Mensing JP, Phokharatkul D, Lomas T, Tuantranont A. Highly selective electrochemical sensor for ascorbic acid based on a novel hybrid graphene-copper phthalocyanine-polyaniline nanocomposites. Electrochim Acta. 2014;133:294–301.

    Article  CAS  Google Scholar 

  55. Kul D, Ghica ME, Pauliukaite R, Brett CM. A novel amperometric sensor for ascorbic acid based on poly (Nile blue A) and functionalised multi-walled carbon nanotube modified electrodes. Talanta. 2013;111:76–84.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. Dr. Esma Kılıç from Ankara University for valuable comments and helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pınar Esra Erden.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaçar, C., Erden, P.E. An amperometric biosensor based on poly(l-aspartic acid), nanodiamond particles, carbon nanofiber, and ascorbate oxidase–modified glassy carbon electrode for the determination of l-ascorbic acid. Anal Bioanal Chem 412, 5315–5327 (2020). https://doi.org/10.1007/s00216-020-02747-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02747-w

Keywords

Navigation