Skip to main content

Advertisement

Log in

Functional glucosamine-iron oxide nanocarriers

  • Biomedical Materials, Regenerative Medicine and Drug Delivery
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Herein, we report a synthetic route capable of producing superparamagnetic, stable and biocompatible glucosamine (GLU) nanocarriers, composed by colloidal iron oxide nanoparticles (ION, ~6 nm) surface-functionalized with GLU dispersed in physiological media (pH 7.2). The route consists first of the preparation of ION by aqueous alkaline co-precipitation of 1:2 Fe(II)/Fe(III) followed by surface treatment with citric acid, activation of acidic groups via carbodiimide intermediary and further amidation using GLU as the amine reactant. Results from cell viability tests performed with human dental pulp tissue cells suggest that ION–GLU nanocolloids are biocompatible and non-toxic for two different concentrations and several hours of incubation. Moreover, optical microscopy shows that ION–GLU adsorbs at the cells walls and also transposes them, reaching cytoplasm and nucleus as well. All findings point out the promising use of ION–GLU as biocompatible nanocarriers for GLU delivery such as in articulation diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. S. Dahmer and R.M. Schiller: Glucosamine. Am. Fam. Physician78, 471 (2008).

    Google Scholar 

  2. E.C. Huskisson: Glucosamine and chondroitin for osteoarthritis. J. Int. Med. Res.36, 1161 (2008).

    Article  CAS  Google Scholar 

  3. S.G. Kirkham and R.K. Samarasinghe: Review article: Glucosamine. J. Orthop. Surg.17, 72 (2009).

    Article  CAS  Google Scholar 

  4. J. Hua, K. Sakamoto, and I. Nagaoka: Inhibitory actions of glucosamine, a therapeutic agent for osteoarthritis, on the functions of neutrophils. J. Leukocyte Biol.71, 632 (2002).

    CAS  Google Scholar 

  5. K.L. Miller and D.O. Clegg: Glucosamine and chondroitin sulfate. Rheum. Dis. Clin. N. Am.37, 103 (2011).

    Article  Google Scholar 

  6. X. Liu, G.C. Machado, J.P. Eyles, V. Ravi, and D.J. Hunter: Dietary supplements for treating osteoarthritis: A systematic review and meta-analysis. Br. J. Sports Med.52, 167 (2019).

    Article  Google Scholar 

  7. F. Zahedipour, R. Dalirfardoueib, G. Karimic, and K. Jamialahmadi: Molecular mechanisms of anticancer effects of glucosamine. Biomed. Pharmacother.95, 1051 (2017).

    Article  CAS  Google Scholar 

  8. M. Cucchiarini and H. Madry: Genetic modification of mesenchymal stem cells for cartilage repair. Bio-Med. Mater. Eng.20, 135 (2010).

    Article  CAS  Google Scholar 

  9. C.G. Jackson, A.H. Plaas, J.D. Sandy, C. Hua, S. Kim-Rolands, J.G. Barnhill, C.L. Harris, and D.O. Clegg: The human pharmacokinetics of oral ingestion of glucosamine and chondroitin sulfate taken separately or in combination. Osteoarthr. Cartil.18, 297 (2010).

    Article  CAS  Google Scholar 

  10. I. Setnikar, M. Pacini, and L. Revel: Antiarthritic effects of glucosamine sulfate studied in animal models. Arzneim.-Forsch.41, 542 (1991).

    CAS  Google Scholar 

  11. M.A.G. Soler and L.G. Paterno: Magnetic nanomaterials. In Nanostructures, F. Leite, M. Ferreira, and O.N. Oliveira Jr., eds. (Elsevier, Oxford, United Kingdom, 2017); pp. 147–186.

  12. M.L. Carneiro, E.S. Nunes, R.C. Peixoto, R.G. Oliveira, L.H. Lourenço, I.C. Da Silva, A.R. Simioni, A.C. Tedesco, A.R. De Souza, and Z.G. Lacava: Free Rhodium (II) citrate and rhodium (II) citrate magnetic carriers as potential strategies for breast cancer therapy. J. Nanobiotechnol.9, 11 (2011).

    Article  CAS  Google Scholar 

  13. A. Zhua, X. Luo, and S. Dai: Chitosan-poly(acrylic acid) complex modified paramagnetic Fe3O4 nanoparticles for camptothecin loading and release. J. Mater. Res.24, 2307 (2009).

    Article  Google Scholar 

  14. A.H. Haghighi, Z. Faghih, M.T. Khorasani, and F. Farjadian: Antibody conjugated onto surface modified magnetic nanoparticles for separation of HER2+ breast cancer cells. J. Magn. Magn. Mater.490, 165479 (2019).

    Article  CAS  Google Scholar 

  15. L.M.R. Rivera, L.G. Paterno, N.L. Chaves, D. Gregurec, S.N. Báo, S.E. Moya, M. Jain, R.B. Azevedo, P.C. Morais, and M.A.G. Soler: Biocompatible superparamagnetic carriers of chondroitin sulfate. Mater. Res. Express6, 066106 (2019).

    Article  CAS  Google Scholar 

  16. V. Kuncser, D. Chipara, K.S. Martirosyan, G.A. Schinteie, E. Ibrahim, and M. Chipara: Magnetic properties and thermal stability of polyvinylidene fluoride—Fe2O3 nanocomposites. J. Mater. Res.35, 132 (2020).

    Article  CAS  Google Scholar 

  17. N. Bao and A. Gupta: Self-assembly of superparamagnetic nanoparticles. J. Mater. Res.26, 111 (2011).

    Article  CAS  Google Scholar 

  18. M.A.G. Soler, L.G. Paterno, J.P. Sinnecker, J.G. Wen, E.H.C.P. Sinnecker, R.F. Neumann, M. Bahiana, M.A. Novak, and P.C. Morais: Assembly of c-Fe2O3/polyaniline nanofilms with tuned dipolar interaction. J. Nanopart. Res.14, 653 (2012).

    Article  CAS  Google Scholar 

  19. C.J. Letti, L.G. Paterno, M.A. Pereira-Da-Silva, P.C. Morais, and M.A.G. Soler: The role of polymer films on the oxidation of magnetite nanoparticles. J. Solid State Chem.246, 57 (2017).

    Article  CAS  Google Scholar 

  20. M.A.G. Soler: Layer-by-layer assembled iron oxide based polymeric nanocomposites. J. Magn. Magn. Mater.467, 37 (2018).

    Article  CAS  Google Scholar 

  21. W.R. Viali, G.B. Alcantara, P.P. Sartoratto, M.A.G. Soler, E. Mosiniewicz-Szablewska, B. Andrzejewski, and P.C. Morais: Investigation of the molecular surface coating on the stability of insulating magnetic oils. J. Phys. Chem. C114, 179 (2009).

    Article  CAS  Google Scholar 

  22. A. Kumar, P.K. Jena, S. Behera, R.F. Lockey, S. Mohapatra, and S. Mohapatra: Multifunctional magnetic nanoparticles for targeted delivery of drug. Nanomedicine6, 64 (2010).

    Article  CAS  Google Scholar 

  23. G.B. Alcantara, L.G. Paterno, F.J. Fonseca, M.A. Pereira-Da-Silva, P.C. Morais, and M.A.G. Soler: Layer-by-layer assembled cobalt ferrite nanoparticles for chemical sensing. J. Nanofluids2, 175 (2013).

    Article  CAS  Google Scholar 

  24. G.B. Alcantara, L.G. Paterno, F.J. Fonseca, M.A. Pereira-Da-Silva, P.C. Morais, and M.A.G. Soler: Dielectric properties of cobalt ferrite nanoparticles in ultrathin nanocomposite films. Phys. Chem. Chem. Phys15, 19853 (2013).

    Article  CAS  Google Scholar 

  25. V. Mahendran and J. Philip: Non-enzymatic glucose detection using magnetic nanoemulsions. Appl. Phys. Lett.105, 123110 (2014).

    Article  CAS  Google Scholar 

  26. E. Fantechi, C. Innocenti, M. Zanardelli, M. Fittipaldi, E. Falvo, M. Carbo, V. Shullani, L.C. Mannelli, C. Ghelardini, A.M. Ferretti, A. Ponti, C. Sangregorio, and P. Ceci: A smart platform for hyperthermia application in cancer treatment: Cobalt-doped ferrite nanoparticles mineralized in human ferritin cages. ACS Nano8, 4705 (2014).

    Article  CAS  Google Scholar 

  27. W. Aadinath, T. Ghosh, and C. Anandharamakrishnan: Multimodal magnetic nano-carriers for cancer treatment: Challenges and advancements. J. Magn. Magn. Mater.401, 1159 (2016).

    Article  CAS  Google Scholar 

  28. C.J. Letti, K.A. Costa, M.A. Gross, L.G. Paterno, M.A. Pereira-Da-Silva, P.C. Morais, and M.A.G. Soler: Synthesis, morphology and electrochemical applications of iron oxide based nanocomposites. Adv. Nano Res.5, 215 (2017).

    Google Scholar 

  29. Z. Gao, T. Ma, E. Zhao, D. Docter, W. Yang, R.H. Stauber, and M. Gao: Small is smarter: Nano MRI contrast agents–advantages and recent achievements. Small12, 556 (2016).

    Article  CAS  Google Scholar 

  30. H. Nosrati, E. Javani, M. Salehiabar, H.K. Manjili, S. Davaran, and H. Danafar: Biocompatibility and anticancer activity of L-phenyl alanine-coated iron oxide magnetic nanoparticles as potential chrysin delivery system. J. Mater. Res.33, 1602 (2018).

    Article  CAS  Google Scholar 

  31. W. Ling, M. Wang, C. Xiong, D. Xie, Q. Chen, X. Chu, X. Qiu, Y. Li, and X. Xiao: Synthesis, surface modification, and applications of magnetic iron oxide nanoparticles. J. Mater. Res.34, 1828 (2019).

    Article  CAS  Google Scholar 

  32. B. Srinivasan and X. Huang: Functionalization of magnetic nanoparticles with organic molecules: Loading level determination and evaluation of linker length effect on immobilization. Chirality20, 265 (2008).

    Article  CAS  Google Scholar 

  33. E. Valero, S. Tambalo, P. Marzola, M. Ortega-Munoz, F.J. López-Jaramillo, F. Santoyo-González, J. Dios López, J.J. Delgado, J.J. Calvino, and R. Cuesta: Magnetic nanoparticles-templated assembly of protein subunits: A new platform for carbohydrate-based MRI nanoprobes. J. Am. Chem. Soc.133, 4889 (2011).

    Article  CAS  Google Scholar 

  34. K. Narayanan, A.W. Lin, Y. Zheng, N. Erathodiyil, A.C. Wan, and J.Y. Ying: Glucosamine-conjugated nanoparticles for the separation of insulin-secreting beta cells. Adv. Healthcare Mater.2, 1198 (2013).

    Article  CAS  Google Scholar 

  35. X. Gong, F. Wang, Y. Huang, X. Lin, C. Chen, F. Wang, and L. Yang: Magnetic-targeting of polyethylenimine-wrapped iron oxide nanoparticle labeled chondrocytes in a rabbit articular cartilage defect model. RSC Adv.8, 7633 (2018).

    Article  CAS  Google Scholar 

  36. W. Wu, Z. Wu, T. Yu, C. Jiang, and W.-S. Kim: Recent progress on magnetic iron oxide nanoparticles: Synthesis, surface functional strategies and biomedical applications. Sci. Technol. Adv. Mater.16, 023501 (2015).

    Article  CAS  Google Scholar 

  37. S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. Vander Elst, and R.N. Muller: Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev.108, 2064 (2008).

    Article  CAS  Google Scholar 

  38. R.N. Goldberg, N. Kishore, and R.M. Lennen: Thermodynamic quantities for the ionization reactions of buffers. J. Phys. Chem. Ref. Data31, 231 (2002).

    Article  CAS  Google Scholar 

  39. H.A. Sturges: The choice of a class interval. J. Am. Stat. Assoc.21, 65 (1926).

    Article  Google Scholar 

  40. A. Kaushik, R. Khan, P.R. Solanki, P. Pandey, J. Alam, S. Ahmad, and B. Malhotra: Iron oxide nanoparticles–chitosan composite based glucose biosensor. Biosens. Bioelectron.24, 676 (2008).

    Article  CAS  Google Scholar 

  41. H.-M. Yang, H.J. Lee, K.-S. Jang, C.W. Park, H.W. Yang, W. Do Heo, and J.-D. Kim: Poly (amino acid)-coated iron oxide nano-particles as ultra-small magnetic resonance probes. J. Mater.Chem.19, 4566 (2009).

    Article  CAS  Google Scholar 

  42. D. Yoo, C. Lee, B. Seo, and Y. Piao: One pot synthesis of amine-functionalized and angular-shaped superparamagnetic iron oxide nanoparticles for MR/fluorescence bimodal imaging application. Rsc Advances7, 12876 (2017).

    Article  CAS  Google Scholar 

  43. F. Pompeo and D.E. Resasco: Water solubilization of single-walled carbon nanotubes by functionalization with glucosamine. Nano Lett.2, 369 (2002).

    Article  CAS  Google Scholar 

  44. J. Degenhardt, and A.J. Mcquillan: In situ ATR-FTIR spectroscopic study of adsorption of perchlorate, sulfate, and thiosulfate ions onto chromium(III) oxide hydroxide thin films. Langmuir15, 4595 (1999). 4595.

  45. D.L. Lewis, E.D. Estes, and D.J. Hodgson: The infrared spectra of coordinated perchlorates. J. Cryst. Mol. Struct.5, 67 (1975).

    Article  CAS  Google Scholar 

  46. M.S.U. Ahmed, A.B. Salam, K.W. Clayton Yates, J. Jaynes, T. Turner, and M.O. Abdalla: Double-receptor-targeting multifunctional iron oxide nanoparticles drug delivery system for the treatment and imaging of prostate cancer. Int. J. Nanomed.12, 6973 (2017).

    Article  CAS  Google Scholar 

  47. M. Veerapandian, S.K. Lim, H.M. Nam, G. Kuppannan, and K.S. Yun: Glucosamine-functionalized silver glyconanoparticles: Characterization and antibacterial activity. Anal. Bioanal. Chem.398, 867 (2010).

    Article  CAS  Google Scholar 

  48. T. Yamashita and P. Hayes: Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci.254, 2441 (2008).

    Article  CAS  Google Scholar 

  49. H. Wu, G. Gao, X. Zhou, Y. Zhang, and S. Guo: Control on the formation of Fe3O4 nanoparticles on chemically reduced graphene oxide surfaces. Cryst. Eng. Comm.14, 499 (2012).

    Article  CAS  Google Scholar 

  50. H. Weaver, J.F. Weaver, G.B. Hoflund, and G.N. Salaita: Electron energy loss spectroscopic investigation of Ni metal and NiO before and after surface reduction by Ar+ bombardment. J. Electron Spectros. Relat. Phenomena134, 139 (2004).

    Article  CAS  Google Scholar 

  51. J.F. Moulder: Handbook of X-ray photoelectron spectroscopy. In Physical Electronics Division, J. Chastain, ed. (Perkin-Elmer Corporation, Minnesota, USA, 1992).

  52. P.R. Norton, R.L. Tapping, and J.W. Goodale: A photoemission study of the interaction of Ni (100),(110) and (111) surfaces with oxygen. Surf. Sci.65, 13 (1977).

    Article  CAS  Google Scholar 

  53. D. Wilson and M.A. Langell: XPS analysis of oleylamine/oleic acid capped Fe3O4 nanoparticles as a function of temperature. Appl. Surf. Sci.303, 6 (2014).

    Article  CAS  Google Scholar 

  54. A.C. Silva, T.R. Oliveira, J.B. Mamani, S.M.F. Malheiros, L. Malavolta, L.F. Pavon, T.T. Sibov, E. Amaro Jr., A. Tannús, E.L.G. Vidoto, M.J. Martins, R.S. Santos, and L.F. Gamarra: Application of hyperthermia induced by superparamagnetic iron oxide nanoparticles in glioma treatment. Int. J. Nanomed6, 591 (2011).

    CAS  Google Scholar 

  55. A.D. Franklin and A.E. Berkowitz: The approach to saturation in dilute ferromagnetics. Phys. Rev.89, 1171 (1953).

    Article  Google Scholar 

  56. K.V.P.M. Shafi, A. Ulman, X.Z. Yan, N.L. Yang, C. Estournes, H. White, and M. Rafailovich: Sonochemical synthesis of functionalized amorphous iron oxide nanoparticles. Langmuir17, 5093 (2001).

    Article  CAS  Google Scholar 

  57. M. Mikhaylova, D.K. Kim, C.C. Berry, A. Zagorodni, M. Toprak, A.S. Curtis, and M. Muhammed: BSA immobilization on amine-functionalized superparamagnetic iron oxide nanoparticles. Chem. Mater.16, 2344 (2004).

    Article  CAS  Google Scholar 

  58. L.G. Paterno, F.J. Fonseca, G.B. Alcantara, M.A.G. Soler, P.C. Morais, J.P. Sinnecker, M.A. Novak, E.C.D. Lima, F.L. Leite, and L.H.C. Mattoso: Fabrication and characterization of nanostructured conducting polymer films containing magnetic nanoparticles. Thin Solid Films517, 1753 (2009).

    Article  CAS  Google Scholar 

  59. M. Aslam, E.A. Schultz, T. Sun, T. Meade, and V.P. Dravid: Synthesis of amine-stabilized aqueous colloidal iron oxide nano-particles. Cryst. Growth Des.7, 471 (2007).

    Article  CAS  Google Scholar 

  60. L. Yang, Z. Cao, H.K. Sajja, H. Mao, L. Wang, H. Geng, H. Xu, T. Jiang, W.C. Wood, and S. Nie: Development of receptor targeted magnetic iron oxide nanoparticles for efficient drug delivery and tumor imaging. J. Biomed. Nanotechnol.4, 439 (2008).

    Article  CAS  Google Scholar 

  61. B. Alberts: Essential Cell Biology (Garland Science, New York, NY, 2013).

  62. J.-C. Bacri, R. Perzynski, D. Salin, V. Cabuil, and R. Massart: Ionic ferrofluids: A crossing of chemistry and physics. J. Magn. Magn. Mater.85, 27 (1990).

    Article  CAS  Google Scholar 

  63. M.A.G. Soler and Q. Fanyao: Raman Spectroscopy of Iron Oxide Nanoparticles. In Raman Spectroscopy of Nanomaterials Characterization, C.S.S.R. Kumar, ed. (Springer, Berlin, 2012); pp. 379–416.

  64. S.W. Silva, T.F.O. Melo, M.A.G. Soler, E.C.D. Lima, A.F. Da Silva, and P.C. Morais: Stability of citrate-coated magnetite and cobalt-ferrite nanoparticles under laser irradiation: A Raman spectroscopy investigation. IEEE Trans. Magn.39, 2645 (2003).

    Article  CAS  Google Scholar 

  65. O.L. Pereira, J.P. Longo, and R.B. Azevedo: Laser irradiation did not increase the proliferation or the differentiation of stem cells from normal and inflamed dental pulp. Arch. Oral Biol.57, 1079 (2012).

    Article  Google Scholar 

Download references

Acknowledgments

The financial supports from the Brazilian agencies MCT-CNPq (Process 424152/2016-9), FINEP, FAP-DF (Process: 193.001.358/2016), FINATEC and CAPES are gratefully acknowledged. We are grateful to Dr. M. J. Araújo Sales, Instituto de Quimica - Universidade de Brasília, for her support with TGA measurements. Also, Dr. O. R. Pires Júnior, Instituto de Ciências Biológicas - Universidade de Brasília, is acknowledged for his support with sample lyophilization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria A. G. Soler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rivera, L.M.R., Machado, J.G., Chandra Mathpal, M. et al. Functional glucosamine-iron oxide nanocarriers. Journal of Materials Research 35, 1726–1737 (2020). https://doi.org/10.1557/jmr.2020.121

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.121

Navigation