Skip to main content
Log in

Fused filament fabrication of polymer composites for extreme environments

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Vast improvements have been made to the capabilities of advanced manufacturing (AM), yet there are still limitations on which materials can effectively be used in the technology. To this end, parts created using AM would benefit from the ability to be developed from feedstock materials incorporating additional functionality. A common three-dimensional (3D) printing polymer, acrylonitrile butadiene styrene, was combined with bismuth and polyvinylidene fluoride via a solvent treatment to fabricate multifunctional composite materials for AM. Composites of varying weight percent loadings were extruded into filaments, which were subsequently 3D printed into blocks via fused filament fabrication. Investigating the material properties demonstrated that in addition to the printed blocks successfully performing as radiation shields, the chemical, thermal, and mechanical properties are suitable for AM. Thus, this work demonstrates that it is possible to enhance AM components with augmented capabilities while not significantly altering the material properties which make AM possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. M.K. Thompson, G. Moroni, T. Vaneker, G. Fadel, R.I. Campbell, I. Gibson, A. Bernard, J. Schulz, P. Graf, B. Ahuja, and F. Martina: Design for additive manufacturing: Trends, opportunities, considerations, and constraints. CIRP Ann.-Manuf. Techn.65, 737 (2016).

    Article  Google Scholar 

  2. L.M. Maiyar, S. Singh, V. Prabhu, and M.K. Tiwari: Part segregation based on particle swarm optimisation for assembly design in additive manufacturing. Int. J. Comput. Integr. Manuf.32, 705 (2019).

    Article  Google Scholar 

  3. J.R.C. Dizon, A.H. Espera, Q.Y. Chen, and R.C. Advincula: Mechanical characterization of 3D-printed polymers. Addit. Manuf.20, 44 (2018).

    CAS  Google Scholar 

  4. L. Szentmiklosi, B. Maroti, Z. Kis, J. Janik, and L.Z. Horvath: Use of 3D mesh geometries and additive manufacturing in neutron beam experiments. J. Radioanal. Nucl. Chem.320, 451 (2019).

    Article  CAS  Google Scholar 

  5. M. Attaran: The rise of 3-D printing: The advantages of additive manufacturing over traditional manufacturing. Bus. Horiz.60, 677 (2017).

    Article  Google Scholar 

  6. N.P. Levenhagen and M.D. Dadmun: Interlayer diffusion of surface segregating additives to improve the isotropy of fused deposition modeling products. Polymer152, 35 (2018).

    Article  CAS  Google Scholar 

  7. B. Mooney, K.I. Kourousis, and R. Raghavendra: Plastic anisotropy of additively manufactured maraging steel: Influence of the build orientation and heat treatments. Addit. Manuf.25, 19–31 (2019).

    CAS  Google Scholar 

  8. N.P. Levenhagen and M.D. Dadmun: Bimodal molecular weight samples improve the isotropy of 3D printed polymeric samples. Polymer122, 232 (2017).

    Article  CAS  Google Scholar 

  9. J.F. Christ, N. Aliheidari, A. Ameli, and P. Potschke: 3D printed highly elastic strain sensors of multiwalled carbon nanotube/ thermoplastic polyurethane nanocomposites. Mater. Design.131, 394 (2017).

    Article  CAS  Google Scholar 

  10. E.Y. Teo, S.Y. Ong, M.S.K. Chong, Z.Y. Zhang, J. Lu, S. Moochhala, B. Ho, and S.H. Teoh: Polycaprolactone-based fused deposition modeled mesh for delivery of antibacterial agents to infected wounds. Biomaterials32, 279 (2011).

    Article  CAS  Google Scholar 

  11. M. Alhijjaj, P. Belton, and S. Qi: An investigation into the use of polymer blends to improve the printability of and regulate drug release from pharmaceutical solid dispersions prepared via fused deposition modeling (FDM) 3D printing. Eur. J. Pharm. Biopharm.108, 111 (2016).

    Article  CAS  Google Scholar 

  12. G. Kollamaram, D.M. Croker, G.M. Walker, A. Goyanes, A.W. Basit, and S. Gaisford: Low temperature fused deposition modeling (FDM) 3D printing of thermolabile drugs. Int. J. Pharm.545(1–2), 144 (2018).

  13. J. Ceh, T. Youd, Z. Mastrovich, C. Peterson, S. Khan, T.A. Sasser, I.M. Sander, J. Doney, C. Turner, and W.M. Leevy: Bismuth infusion of ABS enables additive manufacturing of complex radiological phantoms and shielding equipment. Sensors (Basel)17(3), 459 (2017).

  14. S. Woosley, N.A. Galehdari, A. Kelkar, and S. Aravamudhan: Fused deposition modeling 3D printing of boron nitride composites for neutron radiation shielding. J. Mater. Res.33, 3657 (2018).

    Article  CAS  Google Scholar 

  15. G.P. Kar, S. Biswas, and S. Bose: X-ray micro computed tomography, segmental relaxation and crystallization kinetics in interfacial stabilized co-continuous immiscible PVDF/ABS blends. Polymer101, 291 (2016).

    Article  CAS  Google Scholar 

  16. G.P. Kar, S. Biswas, and S. Bose: Simultaneous enhancement in mechanical strength, electrical conductivity, and electromagnetic shielding properties in PVDF-ABS blends containing PMMA wrapped multiwall carbon nanotubes. Phys. Chem. Chem. Phys.17, 14856 (2015).

    Article  CAS  Google Scholar 

  17. S. Abdalla, A. Obaid, and F.M. Al-Marzouki: Preparation and characterization of poly(vinylidene fluoride): A high dielectric performance nano-composite for electrical storage. Results Phys.6, 617 (2016).

    Article  Google Scholar 

  18. J. Liu, X. Shen, Y.P. Zhao, and L. Chen: Acryloylmorpholine-grafted PVDF membrane with improved protein fouling resistance. Ind. Eng. Chem. Res.52, 18392 (2013).

    Article  CAS  Google Scholar 

  19. F. Liu, N.A. Hashim, Y.T. Liu, M.R.M. Abed, and K. Li: Progress in the production and modification of PVDF membranes. J. Membr. Sci.375, 1 (2011).

    Article  CAS  Google Scholar 

  20. D. Lin-Vien, N.B. Colthup, W.G. Fateley, and J.G. Grasselli: Chapter 3 – Halocompounds. In The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules, D. Lin-Vien, N.B. Colthup, W.G. Fateley, and J.G. Grasselli, eds. (Academic Press, San Diego, 1991); p. 29.

  21. H. Guo, Y. Zhang, F. Xue, Z. Cai, Y. Shang, J. Li, Y. Chen, Z. Wu, and S. Jiang: In-situ synchrotron SAXS and WAXS investigations on deformation and α–β transformation of uniaxial stretched poly (vinylidene fluoride). Cryst. Eng. Comm.15, 1597 (2013).

    Article  CAS  Google Scholar 

  22. Y. Wang and M. Cakmak: Spatial variation of structural hierarchy in injection molded PVDF and blends of PVDF with PMMA. Part II. Application of microbeam WAXS pole figure and SAXS techniques. Polymer42, 4233 (2001).

    Article  CAS  Google Scholar 

  23. G. Beaucage: Approximations leading to a unified exponential/ power-law approach to small-angle scattering. J. Appl. Crystallogr.28, 717 (1995).

    Article  CAS  Google Scholar 

  24. C. Beaucage and D.W. Schaefer: Structural studies of complex systems using small-angle scattering: A unified Guinier/power-law approach. J. Non-Cryst. Solids172, 797 (1994).

    Article  Google Scholar 

  25. D.G. Archer: Enthalpy of fusion of bismuth: A certified reference material for differential scanning calorimetry. J. Chem. Eng. Data49, 1364 (2004).

    Article  CAS  Google Scholar 

  26. C.D. Zou, Y.L. Gao, B. Yang, and Q.J. Zhai: Melting and undercooling of bismuth nanocrystals by solvothermal synthesis. Phys. B404, 4045 (2009).

    Article  CAS  Google Scholar 

  27. D. Turnbull: Formation of crystal nuclei in liquid metals. J. Appl. Phys.21, 1022 (1950).

    Article  CAS  Google Scholar 

  28. C. Marega and A. Marigo: Influence of annealing and chain defects on the melting behaviour of poly (vinylidene fluoride). Eur. Polym. J.39, 1713 (2003).

    Article  CAS  Google Scholar 

  29. J. Feng, C. Carpanese, and A. Fina: Thermal decomposition investigation of ABS containing Lewis-acid type metal salts. Polym. Degrad. Stab.129, 319 (2016).

    Article  CAS  Google Scholar 

  30. J.Y. Lee, Y.G. Liao, R. Nagahata, and S. Horiuchi: Effect of metal nanoparticles on thermal stabilization of polymer/metal nano-composites prepared by a one-step dry process. Polymer47, 7970 (2006).

    Article  CAS  Google Scholar 

  31. S.M. Lebedev, O.S. Gefle, and S.N. Tkachenko: Metal polymer PVDF/nickel composites and evaluation of their dielectric and thermal properties. J. Electrostat.68, 122 (2010).

    Article  CAS  Google Scholar 

  32. Z.W. Ouyang, E.C. Chen, and T.M. Wu: Thermal stability and magnetic properties of polyvinylidene fluoride/magnetite nano-composites. Materials8, 4553 (2015).

    Article  CAS  Google Scholar 

  33. X. Jiang, C. Xu, Y. Wang, and Y. Chen: Polyvinylidene fluoride/ acrylonitrile butadiene rubber blends prepared via dynamic vulcanization. J. Macromol Sci. B54, 58 (2015).

    Article  CAS  Google Scholar 

  34. W.F. Hosford:Mechanical Behavior of Materials (Cambridge University Press, New York, 2010).

  35. A.H. El-Kateb, R.A.M. Rizk, and A.M. Abdul-Kader: Determination of atomic cross-sections and effective atomic numbers for some alloys. Ann. Nucl. Energy27, 1333 (2000).

    Article  CAS  Google Scholar 

  36. A. Canel, H. Korkut, and T. Korkut: Improving neutron and gamma flexible shielding by adding medium-heavy metal powder to epoxy based composite materials. Radiat. Phys. Chem.158, 13 (2019).

    Article  CAS  Google Scholar 

  37. I.I. Bashter: Calculation of radiation attenuation coefficients for shielding concretes. Ann. Nucl. Energy24, 1389 (1997).

    Article  CAS  Google Scholar 

  38. S.J. Zinkle and G.S. Was: Materials challenges in nuclear energy. Acta Mater.61, 735 (2013).

    Article  CAS  Google Scholar 

  39. J. Ilavsky, P.R. Jemian, A.J. Allen, F. Zhang, L.E. Levine, and G.G. Long: Ultra-small-angle X-ray scattering at the Advanced Photon Source. J. Appl. Crystallogr.42, 469 (2009).

    Article  CAS  Google Scholar 

  40. J. Ilavsky: Nika: Software for two-dimensional data reduction. J. Appl. Crystallogr.45, 324 (2012).

    Article  CAS  Google Scholar 

  41. J. Ilavsky and P.R. Jemian: Irena: Tool suite for modeling and analysis of small-angle scattering. J. Appl. Crystallogr.42, 347 (2009).

    Article  CAS  Google Scholar 

  42. J.S. Temenoff, and A.G. Mikos:Biomaterials : The Intersection of Biology and Materials Science (Pearson/Prentice Hall, Upper Saddle River, 2008).

  43. M.R. Kessler:Advanced Topics in Characterization of Composites (Trafford Publishing, Victoria, BC, Canada, 2004).

  44. A.P. Gray: Polymer crystallinity determinations by DSC. Thermochimica Acta.16, 563–579 (1970).

    Article  CAS  Google Scholar 

  45. K.M. Lu, W.J. Lee, W.H. Chen, and T.C. Lin: Thermogravimetric analysis and kinetics of co-pyrolysis of raw/torrefied wood and coal blends. Appl. Energy105, 57 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was performed under the U.S. Department of Energy’s National Nuclear Security Administration Contract No. DE-AC52-06NA25396. This research used resources of the Advanced Photon Source, the U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. USAXS/SAXS data were collected on the 9-ID-C beamline at the APS, Argonne National Laboratory under General User Proposal number 64333. The authors thank Adam Pacheco for his technical support during this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Labouriau.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brounstein, Z., Talley, S., Dumont, J.H. et al. Fused filament fabrication of polymer composites for extreme environments. Journal of Materials Research 35, 1493–1503 (2020). https://doi.org/10.1557/jmr.2020.118

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.118

Navigation