Skip to main content
Log in

Thermal Stability and Electrochemical Properties of Ti–Al–Mo–Ni–N Coatings Fabricated by Arc-PVD

  • NEW SUBSTANCES, MATERIALS, AND COATINGS
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

The electrochemical properties of Ti–Al–Mo–Ni–N coatings with a molybdenum content of 20 and 25 at % fabricated by cathodic arc deposition (Arc-PVD) are studied. Series 2 coatings are characterized by the presence of Mo in both a chemically bound (Mo2N, as with series 1 coatings) and free states (i.e., metallic phase). Considering the multilayer architecture of coatings based on the mixed nitride (TiAl)N and molybdenum-containing phases, their corrosion destruction proceeds layer by layer due to different corrosion resistance of these phases in acidic and alkaline environments. Annealing the coatings at 600°C in vacuum gives rise to diffusional processes in them that lead to a growth of crystallites of the (TiAl)N nitride phase and a decrease in the microstrain. This phenomenon is considerably more conspicuous in series 2 coatings, which can be explained by the higher diffusivity of Mo atoms in the metallic phase than in the case of their counterparts in the nitride phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Belov, D.S., Blinkov, I.V., and Volkhonskii, A.O., Surf. Coat. Technol., 2014, vol. 260, pp. 186–197.

    Article  CAS  Google Scholar 

  2. Blinkov, I.V., Belov, D.S., Volkhonskii, A.O., et al., Prot. Met. Phys. Chem. Surf., 2016, vol. 52, no. 1, pp. 81–88; Blinkov, I.V., Belov, D.S., Volkhonskii, A.O., et al., Prot. Met. Phys. Chem. Surf., 2018, vol. 54, no. 3, pp. 269–279.

    Article  CAS  Google Scholar 

  3. Yang, Q., Zhao, L.R., Patnaik, P.C., et al., Wear, 2006, vol. 261, no. 2, pp. 119–125.

    Article  CAS  Google Scholar 

  4. Lugscheider, E., Knotek, O., Bobzin, K., et al., Surf. Coat. Technol., 2000, vols. 133–134, pp. 362–368.

    Article  Google Scholar 

  5. Franz, R. and Mitterer, C., Surf. Coat. Technol., 2013, vol. 228, pp. 1–13.

    Article  CAS  Google Scholar 

  6. Solak, N., Ustel, F., Urgen, M., et al., Surf. Coat. Technol., 2003, vols. 174–175, pp. 713–719.

    Article  Google Scholar 

  7. Gassner, G., Mayrhofer, P.H., Kutschej, K., et al., Surf. Coat. Technol., 2006, vol. 201, pp. 3335–3341.

    Article  CAS  Google Scholar 

  8. Sergevnin, V.S., Blinkov, I.V., Volkhonskii, A.O., et al., Appl. Surf. Sci., 2016, vol. 388, pp. 13–23.

    Article  CAS  Google Scholar 

  9. Sergevnin, V.S., Blinkov, I.V., Belov, D.S., et al., Int. J. Adv. Manuf. Technol., 2018, vol. 98, pp. 593–601.

    Article  Google Scholar 

  10. Sergevnin, V.S., Blinkov, I.V., Volkhonskii, A.O., et al., Surf. Coat. Technol., 2018. Sergevnin, V.S., Blinkov, I.V., Volkhonskii, A.O., et al., Surf. Coat. Technol., 2019, vol. 376, pp. 38–43.

    Article  CAS  Google Scholar 

  11. Lihua, Y., Dong, S., Xu, J., and Kojima, I., Thin Solid Films, 2008, vol. 516, pp. 1864–1870.

    Article  Google Scholar 

  12. Soderberg, H., Molina-Aldareguia, J.M., Hultman, L., et al., J. Appl. Phys., 2005, vol. 97, p. 114327.

    Article  Google Scholar 

  13. Min Zhang, Kwang Ho Kim, Zhigang Shao, et al., J. Power Sources, 2014, no. 253, pp. 201–204.

  14. Tomaszewski, Ł., Gulbinski, W., Urbanowicz, A., et al., Vacuum, 2015, no. 121, pp. 223–229.

  15. Belov, D.S., Blinkov, I.V., Volkhonskii, A.O., et al., Appl. Surf. Sci., 2016, vol. 388, pp. 2–12.

    Article  CAS  Google Scholar 

  16. Heau, C., Fillit, R.Y., Vaux, F., et al., Surf. Coat. Technol., 1999, vols. 120–121, pp. 200–205.

    Article  Google Scholar 

  17. Barshilia, H., Prakash, M.S., Jain, A., et al., Vacuum, 2005, vol. 77, pp. 169–179.

    Article  CAS  Google Scholar 

  18. Barshilia, H.C., Iain, A., and Rajam, K.S., Vacuum, 2004, vol. 72, pp. 241–248.

    Article  Google Scholar 

  19. Ryabchikov, A.I., Ryabchikov, I.A., Stepanov, I.B., et al., Vacuum, 2005, vol. 78, pp. 445–449.

    Article  CAS  Google Scholar 

  20. Sanjines, R., Wiemer, C., Almeida, J., et al., Thin Solid Films, 1996, vol. 290, pp. 334–338.

    Article  Google Scholar 

  21. Chourasia, A.R. and Chopra, D.R., Thin Solid Films, 1995, vol. 266, p. 298.

    Article  CAS  Google Scholar 

  22. Shannon, R.D., Acta Crystallogr., Sect. A: Cryst. Phys.,Diffr., 1976, vol. 32, p. 238.

    Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 19-19-00555.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Demirov.

Additional information

Translated by A. Kukharuk

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demirov, A.P., Sergevnin, V.S., Blinkov, I.V. et al. Thermal Stability and Electrochemical Properties of Ti–Al–Mo–Ni–N Coatings Fabricated by Arc-PVD. Prot Met Phys Chem Surf 56, 358–362 (2020). https://doi.org/10.1134/S2070205120020057

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205120020057

Keywords:

Navigation