Skip to main content
Log in

Excitons in spherical quantum dots revisited: analysis of colloidal nanocrystals

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The problem of exciton states in spherical semiconductor quantum dots is revisited, employing the finite element method to numerically solve the system of differential equations for the center of mass and relative motion of the interacting electron-hole pair. This process is performed within the effective mass and parabolic bands approximations. The use of a finite confinement together with a parabolic description of the conduction and valence band profiles prevents the two equations from uncoupling. The allowed energies are reported as functions of the quantum dot radius. A comparison of theoretically determined fundamental photoluminescence peak energies with available experimental reports in the cases of CdS, CdSe and CdTe is presented and discussed, showing a good agreement between calculated and measured results.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Bastard, E.E. Mendez, L.L. Chang, L. Esaki, Phys. Rev. B 26, 1974 (1982)

    Article  ADS  Google Scholar 

  2. P.A. Belov, Physica E 112, 96 (2019)

    Article  ADS  Google Scholar 

  3. M. de Dios-Leyva, C.A. Duque, L.E. Oliveira, Phys. Rev. B 75, 035303 (2007)

    Article  ADS  Google Scholar 

  4. M. de Dios-Leyva, C.A. Duque, L.E. Oliveira, Phys. Rev. B 76, 075303 (2007)

    Article  ADS  Google Scholar 

  5. M. El-Yadri, E. Feddi, N. Aghoutane, A. El Aouami, A. Radu, F. Dujardin, C.V. Nguyen, H.V. Phuc, C.A. Duque, J. Appl. Phys. 124, 144303 (2018)

    Article  ADS  Google Scholar 

  6. L. Bányai, S.W. Koch,Semiconductor Quantum dots (World Scientific Publishing Cooperation, Singapore, 1993)

  7. T. Trindade, P. O’Brien, N.L. Pickett, Chem. Mater. 13, 3843 (2001)

    Article  Google Scholar 

  8. W. Zhou, J.J. Coleman, Curr. Opin. Solid State Mater. Sci. 20, 352 (2016)

    Article  ADS  Google Scholar 

  9. S.V. Gaponenko, H.V. Demir,Applied nanophotonics (Cambridge University Press, Cambridge, UK, 2019)

  10. U. Woggon, S.V. Gaponenk, Phys. Status Solidi B 189, 285 (1995)

    Article  ADS  Google Scholar 

  11. C.B. Murray, D.J. Norris, M.G. Bawendi, J. Am. Chem. Soc. 115, 8706 (1993)

    Article  Google Scholar 

  12. D.J. Norris, M.G. Bawendi, Phys. Rev. B 53, 16338 (1996)

    Article  ADS  Google Scholar 

  13. W.W. Yu, X. Peng, Angew. Chem. Int. Ed. 41, 2368 (2002)

    Article  ADS  Google Scholar 

  14. W.W. Yu, L. Qu, W. Guo, X. Peng, Chem. Mater. 15, 2854 (2003)

    Article  Google Scholar 

  15. W.W. Yu, Y.A. Wang, X. Peng, Chem. Mater. 15, 4300 (2003)

    Article  Google Scholar 

  16. C.M. Donegá, Chem. Soc. Rev. 40, 1512 (2011)

    Article  Google Scholar 

  17. C. De Mello Donegá,Nanoparticles: Workhorses of Nanoscience, (Springer Verlag, Berlin, Heidelberg, 2014)

  18. L.E. Brus, J. Chem. Phys. 80, 4403 (1984)

    Article  ADS  Google Scholar 

  19. Y. Kayanuma, Phys. Rev. B 38, 9797 (1988)

    Article  ADS  Google Scholar 

  20. P.E. Lippens, M. Lannoo, Phys. Rev. B 41, 6079 (1990)

    Article  ADS  Google Scholar 

  21. G.T. Einevoll, Phys. Rev. B 45, 3410 (1992)

    Article  ADS  Google Scholar 

  22. J.W. Haus, H.S. Zhou, I. Honma, H. Komiyama, Phys. Rev. B 47, 1359 (1993)

    Article  ADS  Google Scholar 

  23. K.K. Nanda, F.E. Kruis, H. Fissan, Nano Lett. 1, 605 (2001)

    Article  ADS  Google Scholar 

  24. G. Pellegrini, G. Mattei, P. Mazzoldi, J. Appl. Phys. 97, 073706 (2005)

    Article  ADS  Google Scholar 

  25. A. Shabaev, A.V. Rodina, A.L. Efros, Phys. Rev. B 86, 205311 (2012)

    Article  ADS  Google Scholar 

  26. T.O. Cheche, V. Barna, Y.C. Chang, Superlattice Microstruct. 60, 475 (2013)

    Article  ADS  Google Scholar 

  27. H. Zhu, Y. Yang, K. Hyeon-Deuk, M. Califano, N. Song, Y. Wang, W. Zhang, O.V. Prezhdo, T. Lian, Nano Lett. 14, 1263 (2014)

    Article  ADS  Google Scholar 

  28. Y. Liu, S. Bose, W. Fan, Optik 155, 242 (2018)

    Article  ADS  Google Scholar 

  29. N. Zeiri, A. Naifar, S. Abdi-Ben Nasrallah, M. Said, Photonics Nanostruct. 36, 100725 (2019)

    Article  Google Scholar 

  30. S. Jaziri, R. Bennaceur, Semicond. Sci. Technol. 9, 1775 (1994)

    Article  ADS  Google Scholar 

  31. W. Que, Phys. Rev. B 15, 11036 (1992)

    Article  ADS  Google Scholar 

  32. U. Dogan, S. Sakiroglu, A. Yildiz, K. Akgungor, H. Epik, I. Sokmen, H. Sari, Y. Ergun, Int. J. Modern Phys. B 25, 4489 (2011)

    Article  ADS  Google Scholar 

  33. V.V. Gritsev, Yu. A. Kurochkin, Phys. Rev. B 64, 035308 (2001)

    Article  ADS  Google Scholar 

  34. G.E. Cragg, A.L. Efros, Nano Lett. 10, 313 (2010)

    Article  ADS  Google Scholar 

  35. X. Hou, J. Kang, H. Qin, X. Chen, J. Ma, J. Zhou, L. Chen, L. Wang, L.-W. Wang, X. Peng, Nature Commun. 10, 1750 (2019)

    Article  ADS  Google Scholar 

  36. M. Solaimani, H. Moghadam, Appl. Phys. A 126, 278 (2020)

    Article  ADS  Google Scholar 

  37. A. Galiautdinov, Phys. Lett. A 382, 72 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  38. K. Jackson, W. Schroter,Handbook of Semiconductor Technology (Wiley-VCH Verlag GmBH, Weinheim, 2000)

  39. M.E. Mora-Ramos, A. El-Aouami, E. Feddi, A. Radu, R.L. Restrepo, J.A. Vinasco, A.L. Morales, C.A. Duque, Heliyon 6, e03194 (2020)

    Article  Google Scholar 

  40. COMSOL MultiphysicsⓇ v. 5.4. COMSOL AB, Stockholm, Sweden, 2018

  41. COMSOL MultiphysicsⓇ v. 4.3. Reference Guide, Stockholm, Sweden, 2012

  42. COMSOL MultiphysicsⓇ v. 4.3. Users Guide, Stockholm, Sweden, 2012

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. L. Restrepo.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Restrepo, R.L., Ospina-Muñoz, W.A., Feddi, E. et al. Excitons in spherical quantum dots revisited: analysis of colloidal nanocrystals. Eur. Phys. J. B 93, 109 (2020). https://doi.org/10.1140/epjb/e2020-10078-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2020-10078-5

Keywords

Navigation