Skip to main content
Log in

Low temperature behavior of entropy and specific heat of a three dimensional quantum wire: Shannon and Tsallis entropies

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this work, we first use the finite-differential time-domain (FDTD) to calculate the eigenenergies and eigenfunctions of a three dimensional (3D) cylindrical quantum wire. We assume that the inside of the wire is at zero potential. But, the outside of the wire has been chosen at different potentials as infinite and finite values. This is a true 3D procedure based on a direct implementation of the time-dependent Schrödinger equation. Then, we apply the Shannon and Tsallis entropy to obtain entropy and specific of the system. The results show that (i) the specific heat obtained by Tsallis has a peak structure. (ii) The entropy behavior for the finite and infinite confining potential has the same behavior at low temperatures. (iii) The peak value of specific heat increases with enhancing the quantum wire radius.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Sakaki, T. Sugana, J. Jpn. Soc. Appl. Phys. 44, 1131 (1975)

    Google Scholar 

  2. Y.B. Yu, S.N. Zhu, K.X. Guo, Solid State Commun. 139, 76 (2006)

    Article  ADS  Google Scholar 

  3. K. Suenaga, C. Colliex, N. Demoncy, A. Loiseau, H. Pascard, F. Willaime, Science 278, 653 (1997)

    Article  ADS  Google Scholar 

  4. Y. Zhang, Y. Bando, K. Wada, K. Kurashima, Science 281, 973 (1998)

    Article  ADS  Google Scholar 

  5. E. Togan, Y. Chu, A.S. Trifonov, L. Jiang, J. Maze, L. Childress, M.V.G. Dutt, A.S.S. Phrensen, R. Hemmer, A.S. Zibrov, M.D. Lukin, Nature 466, 730 (2010)

    Article  ADS  Google Scholar 

  6. R. Khordad, H.R. Rastegar Sedehi, Superlatt. Microstruct. 101, 559 (2017)

    Article  ADS  Google Scholar 

  7. H. Mousavi, M. Bagheri, J. Khodadadi, Physica E 74, 135 (2015)

    Article  ADS  Google Scholar 

  8. R. Khordad, J. Magn. Magn. Mater. 449, 510 (2018)

    Article  ADS  Google Scholar 

  9. B. Vaseghi, A. Ghaffari, Physica E 81, 163 (2016)

    Article  ADS  Google Scholar 

  10. R. Khordad, B. Vaseghi, Chin. J. Phys. 59, 473 (2019)

    Article  Google Scholar 

  11. R. Khordad, H.R. Rastegar Sedehi, Solid State Commun. 269, 118 (2017)

    Article  ADS  Google Scholar 

  12. D.M. Sullivan, S. Mossman, M.G. Kuzyk, Plos One 11, e0153802 (2016)

    Article  Google Scholar 

  13. D.M. Sullivan, D.S. Citrin, J. Appl. Phys. 97, 104305 (2005)

    Article  ADS  Google Scholar 

  14. D.M. Sullivan, D.S. Citrin, J. Appl. Phys. 91, 3219 (2002)

    Article  ADS  Google Scholar 

  15. M. Akbari, G. Rezaei, R. Khordad, Superlatt. Microstruct. 101, 429 (2017)

    Article  ADS  Google Scholar 

  16. C.J. Burke, T.L. Atherton, J. Lesnefsk, R.G. Petschek, J. Opt. Soc. Am. B 30, 1438 (2013)

    Article  ADS  Google Scholar 

  17. M. Kuzyk, D.S. Watkins, J. Chem. Phys. 124, 244104 (2006)

    Article  ADS  Google Scholar 

  18. J. Zhou, M. Kuzyk, D.S. Watkins, Opt. Lett. 31, 2891 (2006)

    Article  ADS  Google Scholar 

  19. C. Tsallis, J. Stat. Phys. 52, 479 (1988)

    Article  ADS  Google Scholar 

  20. C. Tsallis, R.S. Mendes, A.R. Plastino, Physica A 261, 534 (1998)

    Article  ADS  Google Scholar 

  21. A. Renyi,Probability Theory (North Holland, Amsterdam, 1970)

  22. P.T. Landsberg, V. Vedral, Phys. Lett. A 247, 211 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  23. S. Abe, C. Beck, E.G.D. Cohen, Phys. Rev. E 76, 031102 (2007)

    Article  ADS  Google Scholar 

  24. A. Soriano, E.A. Navarro, J.A. Porti, V. Such, J. Appl. Phys. 95, 8011 (2004)

    Article  ADS  Google Scholar 

  25. G.B. Ren, J.M. Rorison, Phys. Rev. E 69, 036705 (2004)

    Article  ADS  Google Scholar 

  26. W. Dai, G. Li, R. Nassar, S. Su, Numer. Methods Partial Differ. Equ. 21, 1140 (2005)

    Article  Google Scholar 

  27. J.P. Berenger, J. Comput. Phys. 114, 185 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  28. E.P. da silva, C. Tsallis, E.M.F Curado, Physica A 199, 137 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  29. R. Khordad, H.R. Rastegar Sedehi, Eur. Phys. J. Plus 134, 133 (2019)

    Article  Google Scholar 

  30. D. Najafi, B. Vaseghia, G. Rezaei, R. Khordad, Eur. Phys. J. Plus 134, 17 (2019)

    Article  Google Scholar 

  31. N. Kalogeropoulos, Eur. Phys. J. B 87, 56 (2014)

    Article  ADS  Google Scholar 

  32. G.L. Ferri, A. Plastino, M.C. Rocca, D.L. Zamora, Eur. Phys. J. B 90, 46 (2017)

    Article  ADS  Google Scholar 

  33. H.R. Rastegar Sedehi, R. Khordad, Solid State Commun. 313, 113911 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Khordad.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Servatkhah, M., Khordad, R., Firoozi, A. et al. Low temperature behavior of entropy and specific heat of a three dimensional quantum wire: Shannon and Tsallis entropies. Eur. Phys. J. B 93, 111 (2020). https://doi.org/10.1140/epjb/e2020-10034-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2020-10034-5

Keywords

Navigation