Skip to main content
Log in

Influence of Prenatal Stress on the Activity of Antioxidant Enzymes in the Subcellular Fractions of the Neurons and Neuroglia of the Rat Neocortex

  • EXPERIMENTAL ARTICLES
  • Published:
Neurochemical Journal Aims and scope Submit manuscript

Abstract—We studied the effect of prenatal stress on the activity of glutathione-bound enzymes in the subcellular fractions of neurons and neuroglia of rat neocortex. The results of the study showed that prenatal stress causes changes in the activity of these enzymes in both neurons and neocortical neuroglia. These changes differ in the subcellular fractions of the studied cell populations. In the nuclei of neurons and neuroglia fraction, the activity of glutathione peroxidase increases. In the cytosol of neurons fraction, the activity of glutathione peroxidase decreases, while in the cytosol of neuroglia it grows. In neuronal mitochondria, the activity of glutathione peroxidase and glutathione transferase increases, while in the neuroglial mitochondria fraction, the activity of glutathione peroxidase decreases. It has been suggested that a change in the activity of these enzymes in the subcellular fractions of neurons and neuroglia is one of the causes for the resistance of the neocortex to the effects of prenatal stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Weinstock, M., Stress, 2002, vol. 5, no. 3, pp. 167–176.

    Article  CAS  Google Scholar 

  2. Weinstock, M., Brain, Behav. Immun., 2005, vol. 19, pp. 296–308.

    Article  CAS  Google Scholar 

  3. Otellin, V.A., Khozhai, L.I., and Ordyan, N.E., Prenatal’nye stressornye vozdeistviya i razvivayushchiisya golovnoi mozg (Prenatal Stress and Developing Brain), St. Petersburg: Desyatka, 2007.

  4. Flerov, M.A., Gerasimova, I.A., and V’yushina, A.V., Neirokhimiya, 2005, vol. 22, no. 2, pp. 102–107.

    Google Scholar 

  5. V’yushina, A.V., Pritvorova, A.V., and Flerov, M.A., Neurochem. J., 2012, vol. 6, no. 3, pp. 227–232.

    Article  Google Scholar 

  6. Geremia, E., Baratta, D., Zafarana, S., Giordano, R., Pinizotto, M.R., La Rosa, M.S., and Garozzo, A., Neurochem. Res., 1990, vol. 15, pp. 719–723.

    Article  CAS  Google Scholar 

  7. Khanna, P. and Nehru, B., Cell. Mol. Neurobiol., 2007, vol. 27, pp. 959–969.

    Article  CAS  Google Scholar 

  8. Pierozan, P., Biasibetti, H., Schmitz, F., Avila, H., Fernandes, C.G., Pessoa-Pureur, R., and Wyse, A.T.S., Mol. Neurobiol., 2017, vol. 54, pp. 5752–5767.

    Article  CAS  Google Scholar 

  9. Savaskan, N.E., Borchert, A., Brauer, A.U., and Kuhn, H., Free Rad.Biol. & Med., 2007, vol. 43, pp. 191–201.

    Article  CAS  Google Scholar 

  10. Fernandez-Fernandes, S., Almeida, A., and Bolanos, J.P., Biochem. J., 2012, vol. 443, pp. 3–12.

    Article  Google Scholar 

  11. Bolanos, J.P., J. Neurochem., 2016, vol. 139, suppl. no. 2, pp. 115–125.

    Article  CAS  Google Scholar 

  12. Baxter, P.S. and Hardingham, G.E., Free Rad. Biol. & Med., 2016, vol. 100, pp. 147–152.

    Article  CAS  Google Scholar 

  13. Kulinskii, V.I. and Kolesnichenko, L.S., Usp. Sovrem. Biol., 1990, vol. 110, no. 1(4), pp. 20–33.

  14. Ordyan, N.E. and Pivina, S.G., Ros. Fiziol. Zhurn.im.I.M. Sechenova, 2003, vol. 84, no, 1, pp. 52–59.

    Google Scholar 

  15. Flerov, M.A., Vopr. Med. Khim., 1978, vol. 24, no. 2, pp. 174–180.

    CAS  PubMed  Google Scholar 

  16. Paglia, D.E. and Valentine, W.N., J. Lab. Clin. Med., 1967, vol. 70, pp. 158–169.

  17. Carlbeg, I. and Mannervik, B., J. Biol. Chem., 1975, vol. 250, no. 14, pp. 5475–5480.

  18. Habig, W.H., Pabst, M.J., and Jakoby, W.B., J. Biol. Chem., 1974, vol. 249, no. 22, pp. 7130–7139.

  19. Rose, J., Brian, C., Woods, J., Pappa, A., Panayiotidis, M.L., Powers, R., and Franco, R., Toxicology, 2017, vol. 391, pp. 109–115.

    Article  CAS  Google Scholar 

  20. Kubik, L.L. and Philbert, M.A., Toxicol. Sci., 2015, vol. 144, no. 1, pp. 7–16.

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Program of Fundamental Scientific Research of State Academies for 2014–2020 (GP-14, section 65).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Pritvorova.

Ethics declarations

Conflict of interest. The authors declared no conflict of interest.

Ethical approval. The study was performed in compliance with the recommendations on ethics of working with animals proposed by Directive 2010/63/EU of the European Parliament and of the Council on the protection of animals used for scientific purposes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

V’yushina, A.V., Pritvorova, A.V., Semenova, O.G. et al. Influence of Prenatal Stress on the Activity of Antioxidant Enzymes in the Subcellular Fractions of the Neurons and Neuroglia of the Rat Neocortex. Neurochem. J. 14, 187–190 (2020). https://doi.org/10.1134/S1819712420020130

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1819712420020130

Keywords:

Navigation