Skip to main content
Log in

Morphine Induces Apoptosis, Inflammation, and Mitochondrial Oxidative Stress via Activation of TRPM2 Channel and Nitric Oxide Signaling Pathways in the Hippocampus

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

A Correction to this article was published on 22 June 2020

This article has been updated

Abstract

Morphine as an opioid is an important drug in the treatment of moderate to severe pain. Several stress factors via generation of nitric oxide (NO) and oxidative stress (OS) are responsible for the adverse effects of morphine-induced analgesia, addiction, and antinociceptive tolerance, including altered Ca2+ concentration, inflammation, OS, and release of apoptotic factors. TRPM2 is a Ca2+-permeable cation channel and it is activated by OS and NO. Hence, adverse effect of morphine addiction may occur via the OS and NO-induced TRPM2 activation. Because of the unclear etiology of morphine-induced adverse effects in the hippocampus, investigating the involvement of TRPM2 and NO synthetase (NOS) activations in the treatment of morphine-induced OS, apoptosis, and neuroinflammation is a major challenge. The hippocampal neuron of TRPM2 wild-type (TRPM2-WT) and knockout (TRPM2-KO) mice were divided into control, morphine, NOS inhibitor (L-NAME) + morphine, and TRPM2 channel blockers (ACA and 2-APB) + morphine. The morphine-induced increases of apoptosis, neuron death, OS, lipid peroxidation, caspase-3 and caspase-9, neuroinflammatory cytokines (IL-1β, TNF-α, IL-6), and Ca2+ levels in the hippocampal neuron of TRPM2-WT mouse were decreased by the L-NAME, ACA, and 2-APB treatments, although cell viability, neuron count, and reduced glutathione and glutathione peroxidase levels were increased by the treatments. However, the effects of morphine were not observed in the hippocampus of TRPM2-KO mice. Taken together, our data show that neurodegeneration adverse effects of morphine were induced by activation of TRPM2, and excessive generations of NO and OS. Thus, inhibition of TRPM2 may modulate morphine-induced neurodegeneration in the hippocampus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

  • 22 June 2020

    The original version of this article unfortunately contained some mistake.

Abbreviations

[Ca2+]c :

Intracellular free calcium ion concentration

2-APB:

2-Aminoethoxydiphenyl borate

ACA:

N-(p-amylcinnamoyl) anthranilic acid

CPx:

Cumene hydroperoxide

L-NAME:

NG-nitro-l-arginine methyl ester

LSC:

Laser scan confocal

MDA:

Malondialdehyde

NAD+ :

Nicotinamide adenine dinucleotide

NO:

Nitric oxide

NOS:

Nitric oxide synthase

OS:

Oxidative stress

PARP-1 :

Poly [ADP-ribose] polymerase-1

rGSH:

Reduced glutathione

TRPM2 :

Transient receptor potential melastatin 2

TRPM2-KO:

TRPM2 knockout

TRPM2-WT:

TRPM2 wild type

VGCC:

Voltage-gated calcium channel

References

  1. Fields HL, Margolis EB (2015) Understanding opioid reward. Trends Neurosci 38(4):217–225. https://doi.org/10.1016/j.tins.2015.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Shen F, Wang XW, Ge FF, Li YJ, Cui CL (2016) Essential role of the NO signaling pathway in the hippocampal CA1 in morphine-associated memory depends on glutaminergic receptors. Neuropharmacology 102:216–228. https://doi.org/10.1016/j.neuropharm.2015.11.008

    Article  CAS  PubMed  Google Scholar 

  3. Khan MI, Momeny M, Ostadhadi S, Jahanabadi S, Ejtemaei-Mehr S, Sameem B, Zarrinrad G, Dehpour AR (2018) Thalidomide attenuates development of morphine dependence in mice by inhibiting PI3K/Akt and nitric oxide signaling pathways. Prog Neuro-Psychopharmacol Biol Psychiatry 82:39–48. https://doi.org/10.1016/j.pnpbp.2017.12.002

    Article  CAS  Google Scholar 

  4. Chin TY, Chueh SH, Tao PL (2006) S-Nitrosoglutathione and glutathione act as NMDA receptor agonists in cultured hippocampal neurons. Acta Pharmacol Sin 27(7):853–860. https://doi.org/10.1111/j.1745-7254.2006.00379.x

    Article  CAS  PubMed  Google Scholar 

  5. Cai Y, Yang L, Hu G, Chen X, Niu F, Yuan L, Liu H, Xiong H et al (2016) Regulation of morphine-induced synaptic alterations: role of oxidative stress, ER stress, and autophagy. J Cell Biol 215(2):245–258. https://doi.org/10.1083/jcb.201605065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ma J, Yuan X, Qu H, Zhang J, Wang D, Sun X, Zheng Q (2015) The role of reactive oxygen species in morphine addiction of SH-SY5Y cells. Life Sci 124:128–135. https://doi.org/10.1016/j.lfs.2015.01.003

    Article  CAS  PubMed  Google Scholar 

  7. Mansouri MT, Naghizadeh B, Ghorbanzadeh B, Alboghobeish S, Amirgholami N, Houshmand G, Cauli O (2018) Venlafaxine prevents morphine antinociceptive tolerance: the role of neuroinflammation and the L-arginine–nitric oxide pathway. Exp Neurol 303:134–141. https://doi.org/10.1016/j.expneurol.2018.02.009

    Article  CAS  PubMed  Google Scholar 

  8. Mansouri MT, Naghizadeh B, Ghorbanzadeh B, Amirgholami N, Houshmand G, Alboghobeish S (2020) Venlafaxine inhibits naloxone-precipitated morphine withdrawal symptoms: role of inflammatory cytokines and nitric oxide. Metab Brain Dis 35(2):305–313. https://doi.org/10.1007/s11011-019-00491-4

    Article  CAS  PubMed  Google Scholar 

  9. Gądek-Michalska A, Tadeusz J, Rachwalska P, Bugajski J (2013) Cytokines, prostaglandins and nitric oxide in the regulation of stress-response systems. Pharmacol Rep 65(6):1655–1662

    Article  PubMed  Google Scholar 

  10. Majlessi N, Choopani S, Bozorgmehr T, Azizi Z (2008) Involvement of hippocampal nitric oxide in spatial learning in the rat. Neurobiol Learn Mem 90(2):413–419. https://doi.org/10.1016/j.nlm.2008.04.010

    Article  CAS  PubMed  Google Scholar 

  11. Ota KT, Monsey MS, Wu MS, Schafe GE (2010) Synaptic plasticity and NO-cGMP-PKG signaling regulate pre- and postsynaptic alterations at rat lateral amygdala synapses following fear conditioning. PLoS One 5(6):e11236. https://doi.org/10.1371/journal.pone.0011236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Khavandgar S, Homayoun H, Zarrindast MR (2003) The effect of L-NAME and L-arginine on impairment of memory formation and state-dependent learning induced by morphine in mice. Psychopharmacology 167(3):291–296. https://doi.org/10.1007/s00213-002-1377-7

    Article  CAS  PubMed  Google Scholar 

  13. Jan WC, Chen CH, Hsu K, Tsai PS, Huang CJ (2011) L-type calcium channels and μ-opioid receptors are involved in mediating the anti-inflammatory effects of naloxone. J Surg Res 167(2):e263–e272. https://doi.org/10.1016/j.jss.2010.03.039

    Article  CAS  PubMed  Google Scholar 

  14. Nazıroğlu M, Lückhoff A (2008) Effects of antioxidants on calcium influx through TRPM2 channels in transfected cells activated by hydrogen peroxide. J Neurol Sci 270(1–2):152–158. https://doi.org/10.1016/j.jns.2008.03.003

    Article  CAS  PubMed  Google Scholar 

  15. Hara Y, Wakamori M, Ishii M, Maeno E, Nishida M, Yoshida T, Yamada H, Shimizu S et al (2002) LTRPC2 Ca2+-permeable channel activated by changes in redox status confers susceptibility to cell death. Mol Cell 9(1):163–173. https://doi.org/10.1016/S1097-2765(01)00438-5

    Article  CAS  PubMed  Google Scholar 

  16. Perraud AL, Fleig A, Dunn CA, Bagley LA, Launay P, Schmitz C, Stokes AJ, Zhu Q et al (2001) ADP-ribose gating of the calcium-permeable LTRPC2 channel revealed by Nudix motif homology. Nature. 411(6837):595–599. https://doi.org/10.1038/35079100

    Article  CAS  PubMed  Google Scholar 

  17. Nazıroğlu M (2017) Activation of TRPM2 and TRPV1 channels in dorsal root ganglion by NADPH oxidase and protein kinase C molecular pathways: a patch clamp study. J Mol Neurosci 61(3):425–435. https://doi.org/10.1007/s12031-017-0882-4

    Article  CAS  PubMed  Google Scholar 

  18. Ratnam M, Chan J, Lesani N, Sidorova-Darmos E, Eubanks JH, Aarts MM (2018) mRNA expression of transient receptor potential melastatin (TRPM) channels 2 and 7 in perinatal brain development. Int J Dev Neurosci 69:23–31. https://doi.org/10.1016/j.ijdevneu.2018.05.008

    Article  CAS  PubMed  Google Scholar 

  19. Ataizi ZS, Ertilav K, Nazıroğlu M (2019) Mitochondrial oxidative stress-induced brain and hippocampus apoptosis decrease through modulation of caspase activity, Ca(2+) influx and inflammatory cytokine molecular pathways in the docetaxel-treated mice by melatonin and selenium treatments. Metab Brain Dis 34(4):1077–1089. https://doi.org/10.1007/s11011-019-00428-x

    Article  CAS  PubMed  Google Scholar 

  20. Haraguchi K, Kawamoto A, Isami K, Maeda S, Kusano A, Asakura K, Shirakawa H, Mori Y et al (2012) TRPM2 contributes to inflammatory and neuropathic pain through the aggravation of pronociceptive inflammatory responses in mice. J Neurosci 32(11):3931–3941. https://doi.org/10.1523/JNEUROSCI.4703-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Miyake T, Shirakawa H, Kusano A, Sakimoto S, Konno M, Nakagawa T, Mori Y, Kaneko S (2014) TRPM2 contributes to LPS/IFNγ-induced production of nitric oxide via the p38/JNK pathway in microglia. Biochem Biophys Res Commun 444(2):212–217. https://doi.org/10.1016/j.bbrc.2014.01.022

    Article  CAS  PubMed  Google Scholar 

  22. Pierre F, Ugur M, Faivre F, Doridot S, Veinante P, Massotte D (2019) Morphine-dependent and abstinent mice are characterized by a broader distribution of the neurons co-expressing mu and delta opioid receptors. Neuropharmacology. 152:30–41. https://doi.org/10.1016/j.neuropharm.2019.03.009

    Article  CAS  PubMed  Google Scholar 

  23. Cunha-Oliveira T, Rego AC, Garrido J, Borges F, Macedo T, Oliveira CR (2007) Street heroin induces mitochondrial dysfunction and apoptosis in rat cortical neurons. J Neurochem 101(2):543–554. https://doi.org/10.1111/j.1471-4159.2006.04406.x

    Article  CAS  PubMed  Google Scholar 

  24. Motaghinejad M, Karimian M, Motaghinejad O, Shabab B, Yazdani I, Fatima S (2015) Protective effects of various dosage of curcumin against morphine induced apoptosis and oxidative stress in rat isolated hippocampus. Pharmacol Rep 67(2):230–235. https://doi.org/10.1016/j.pharep.2014.09.006

    Article  CAS  PubMed  Google Scholar 

  25. Shariftabrizi A, Nifli AP, Ansari M, Saadat F, Ebrahimkhani MR, Alizadeh N, Nasseh A, Alexaki VI et al (2006) Matrix metalloproteinase 2 secretion in WEHI 164 fibrosarcoma cells is nitric oxide-related and modified by morphine. Eur J Pharmacol 530(1–2):33–39. https://doi.org/10.1016/j.ejphar.2005.11.043

    Article  CAS  PubMed  Google Scholar 

  26. Rahmati R (2012) The transient receptor potential vanilloid receptor 1, TRPV1 (VR1) inhibits peristalsis in the mouse jejunum. Arch Iran Med 15(7):433–438 https://doi.org/012157/AIM.0012

    CAS  PubMed  Google Scholar 

  27. Övey IS, Nazıroğlu M (2015) Homocysteine and cytosolic GSH depletion induce apoptosis and oxidative toxicity through cytosolic calcium overload in the hippocampus of aged mice: involvement of TRPM2 and TRPV1 channels. Neuroscience 284:225–233. https://doi.org/10.1016/j.neuroscience.2014.09.078

    Article  CAS  PubMed  Google Scholar 

  28. Gökçe Kütük S, Gökçe G, Kütük M, Gürses Cila HE, Nazıroğlu M (2019) Curcumin enhances cisplatin-induced human laryngeal squamous cancer cell death through activation of TRPM2 channel and mitochondrial oxidative stress. Sci Rep 9(1):17784. https://doi.org/10.1038/s41598-019-54284-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nazıroğlu M, Çiğ B, Yazğan Y, Schwaerzer GK, Theilig F, Pecze L (2019) Albumin evokes Ca(2+)-induced cell oxidative stress and apoptosis through TRPM2 channel in renal collecting duct cells reduced by curcumin. Sci Rep 9(1):12403. https://doi.org/10.1038/s41598-019-48716-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Uğuz AC, Nazıroğlu M, Espino J, Bejarano I, González D, Rodríguez AB, Pariente JA (2009) Selenium modulates oxidative stress-induced cell apoptosis in human myeloid HL-60 cells through regulation of calcium release and caspase-3 and -9 activities. J Membr Biol 232(1–3):15–23. https://doi.org/10.1007/s00232-009-9212-2

    Article  CAS  PubMed  Google Scholar 

  31. Joshi DC, Bakowska JC (2011) Determination of mitochondrial membrane potential and reactive oxygen species in live rat cortical neurons. J Vis Exp 51. https://doi.org/10.3791/2704

  32. Keil VC, Funke F, Zeug A, Schild D, Müller M (2011) Ratiometric high-resolution imaging of JC-1 fluorescence reveals the subcellular heterogeneity of astrocytic mitochondria. Pflugers Arch 462:693–708. https://doi.org/10.1007/s00424-011-1012-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Akyuva Y, Nazıroğlu M (2020) Resveratrol attenuates hypoxia-induced neuronal cell death, inflammation and mitochondrial oxidative stress by modulation of TRPM2 channel. Sci Rep 10(1):6449. https://doi.org/10.1038/s41598-020-63577-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Carrasco C, Nazıroǧlu M, Rodríguez AB, Pariente JA (2018) Neuropathic pain: delving into the oxidative origin and the possible implication of transient receptor potential channels. Front Physiol 9:95. https://doi.org/10.3389/fphys.2018.00095

    Article  PubMed  PubMed Central  Google Scholar 

  35. Nazıroğlu M, Demirdaş A (2015) Psychiatric disorders and TRP channels: focus on psychotropic drugs. Curr Neuropharmacol 13(2):248–257. https://doi.org/10.2174/1570159X13666150304001606

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zhu T, Zhao Y, Hu H, Zheng Q, Luo X, Ling Y, Ying Y, Shen Z et al (2019) TRPM2 channel regulates cytokines production in astrocytes and aggravates brain disorder during lipopolysaccharide-induced endotoxin sepsis. Int Immunopharmacol 75:105836. https://doi.org/10.1016/j.intimp.2019.105836

    Article  CAS  PubMed  Google Scholar 

  37. Kumar VS, Gopalakrishnan A, Naziroğlu M, Rajanikant GK (2014) Calcium ion—the key player in cerebral ischemia. Curr Med Chem 21(18):2065–2075. https://doi.org/10.2174/0929867321666131228204246

    Article  CAS  PubMed  Google Scholar 

  38. Nazıroğlu M (2007) New molecular mechanisms on the activation of TRPM2 channels by oxidative stress and ADP-ribose. Neurochem Res 32(11):1990–2001

    Article  PubMed  Google Scholar 

  39. Hull LC, Rabender C, Gabra BH, Zhang F, Li PL, Dewey WL et al (2010) Role of CD38, a cyclic ADP-ribosylcyclase, in morphine antinociception and tolerance. J Pharmacol Exp Ther 334:1042–1050. https://doi.org/10.1124/jpet.110.169243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zou Y, He X, Peng QY, Guo QL (2017) Inhibition of CD38/cyclic ADP-ribose pathway protects rats against ropivacaine-induced convulsion. Chin Med J 130(19):2354–2360. https://doi.org/10.4103/0366-6999.215333

    Article  PubMed  PubMed Central  Google Scholar 

  41. Razavi Y, Alamdary SZ, Katebi SN, Khodagholi F, Haghparast A (2014) Morphine-induced apoptosis in the ventral tegmental area and hippocampus after the development but not extinction of reward-related behaviors in rats. Cell Mol Neurobiol 34(2):235–245. https://doi.org/10.1007/s10571-013-0007-8

    Article  CAS  PubMed  Google Scholar 

  42. Katebi SN, Razavi Y, Zeighamy Alamdary S, Khodagholi F, Haghparast A (2013) Morphine could increase apoptotic factors in the nucleus accumbens and prefrontal cortex of rat brain’s reward circuitry. Brain Res 1540:1–8. https://doi.org/10.1016/j.brainres.2013.09.045

    Article  CAS  PubMed  Google Scholar 

  43. Miller BA (2019) TRPM2 in cancer. Cell Calcium 80:8–17. https://doi.org/10.1016/j.ceca.2019.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. He H, Huh J, Wang H, Kang Y, Lou J, Xu Z (2016) Mitochondrial events responsible for morphine’s cardioprotection against ischemia/reperfusion injury. Toxicol Appl Pharmacol 290:66–73. https://doi.org/10.1016/j.taap.2015.11.019

    Article  CAS  PubMed  Google Scholar 

  45. Cunha-Oliveira T, Silva L, Silva AM, Moreno AJ, Oliveira CR, Santos MS (2013) Mitochondrial complex I dysfunction induced by cocaine and cocaine plus morphine in brain and liver mitochondria. Toxicol Lett 219(3):298–306. https://doi.org/10.1016/j.toxlet.2013.03.025

    Article  CAS  PubMed  Google Scholar 

  46. Kapasi AA, Gibbons N, Mattana J, Singhal PC (2000) Morphine stimulates mesangial cell TNF-alpha and nitrite production. Inflammation. 24(5):463–476

    Article  CAS  PubMed  Google Scholar 

  47. Guilhon CC, Raymundo LJ, Alviano DS, Blank AF, Arrigoni-Blank MF, Matheus ME, Cavalcanti SC, Alviano CS et al (2011) Characterisation of the anti-inflammatory and antinociceptive activities and the mechanism of the action of Lippia gracilis essential oil. J Ethnopharmacol 135(2):406–413. https://doi.org/10.1016/j.jep.2011.03.032

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank technician Hulusi Gül (BSN Health, Analyses, Innovation, Consultancy, Organization, Agriculture and Industry Ltd., Göller Bölgesi Teknokenti, Isparta, Turkey) for helping with the animal experiments and LSC microscope. The cell culture, antioxidant, and cell viability analyses in the current study were performed in 3rd International Brain Research School, 25 June–1 July October 2018, Isparta, Turkey by Ö.O., M.K.Y., and Y.A. (http://2018.brs.org.tr/).

Funding

The study was supported by BSN Health, Analyses, Innovation, Consultancy, Organization, Agriculture and Industry Ltd., Isparta, Turkey (Project No. 2018-033). Coordinator of the project was M.N. There is no financial disclosure of the current study.

Author information

Authors and Affiliations

Authors

Contributions

Ö.O. and M.N. formulated the hypothesis and M.N. was responsible for writing the report. K.Y. was responsible for isolating the hippocampus and analyzing the intracellular Ca2+ concentration. The cell culture, antioxidant, and cell viability analyses were performed by Ö.O. and M.K.Y. Y.A. also made critical revision of the manuscript.

Corresponding author

Correspondence to Mustafa Nazıroğlu.

Ethics declarations

Ethical Approval

This article does not contain any studies with human participants performed by any of the authors. The study was approved by the Experimental Animal Research Center of Suleyman Demirel University (SDU), Isparta, Turkey (28 February 2019; Protocol No. 2019-03-01; applicant—Ö.O.).

Conflict of Interest

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised: The first givenname of the first author has been added to read “Haci Ömer Osmanlıoğlu”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osmanlıoğlu, H.Ö., Yıldırım, M.K., Akyuva, Y. et al. Morphine Induces Apoptosis, Inflammation, and Mitochondrial Oxidative Stress via Activation of TRPM2 Channel and Nitric Oxide Signaling Pathways in the Hippocampus. Mol Neurobiol 57, 3376–3389 (2020). https://doi.org/10.1007/s12035-020-01975-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-020-01975-6

Keywords

Navigation