Skip to main content
Log in

Amelioration of motor and non-motor deficits and increased striatal APoE levels highlight the beneficial role of pistachio supplementation in rotenone-induced rat model of PD

  • Original Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Pistachio contains polyphenolic compounds including flavonoids and anthocyanins which have antioxidant and antiinflammatory activity. Present study was aimed to evaluate the protective effects of pistachio on neurobehavioral and neurochemical changes in rats with Parkinson’s disease (PD). Animal model of PD was induced by the injection of rotenone (1.5 mg/kg/day, s.c.) for 8 days. Pistachio (800 mg/kg/day, p.o.) was given for two weeks in both pre- and post-treatment. At the end of treatment brain was dissected out and striatum was isolated for biochemical and neurochemical analysis. Memory was assessed by Morris water maze (MWM) and novel object recognition (NOR) test while open field test (OFT), Kondziela inverted screen test (KIST), pole test (PT), beam walking test (BWT), inclined plane test (IPT) and footprint (FP) test were used to observe motor behavior. Rotenone administration significantly (p < 0.01) impaired the memory but pistachio in both pre- and post-treatment groups significantly (p < 0.01) improved memory performance. Rotenone-induced motor deficits were significantly attenuated in both pre- and post-pistachio treatment. Increased oxidative stress and decreased DA and 5-HT levels induced by rotenone were also significantly attenuated by pistachio supplementation. Furthermore, raised apolipoprotein E (APoE) levels in rotenone injected rats were also normalized following treatment with pistachio. Present findings show that pistachio possesses neuroprotective effects and improves memory and motor deficits via increasing DA levels and improving oxidative status in brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aksoy N, Aksoy M, Bagci C, Gergerlioglu HS, Celik H, Herken E et al (2007) Pistachio intake increases high density lipoprotein levels and inhibits low-density lipoprotein oxidation in rats. Tohoku J Exp Med 212:43–48

    PubMed  CAS  Google Scholar 

  • Batool Z, Sadir S, Liaquat L, Tabassum S, Madiha S, Rafiq S, Tariq S, Batool TS, Saleem S, Naqvi F, Perveen T, Haider S (2016) Repeated administration of almonds increases brain acetylcholine levels and enhances memory function in healthy rats while attenuates memory deficits in animal model of amnesia. Brain Res Bull 120:63–74

    PubMed  CAS  Google Scholar 

  • Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT (2000) Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nature Neurosci 3:1301–1306

    PubMed  CAS  Google Scholar 

  • Carey AN, Poulose SM, Shukitt-Hale B (2012) The beneficial effects of tree nuts on the aging brain. Nutrition Aging 1:55–67

    Google Scholar 

  • Chen HK, Ji ZS, Dodson SE, Miranda RD, Rosenblum CI, Reynolds IJ et al (2011) Apolipoprotein E4 domain interaction mediates detrimental effects on mitochondria and is a potential therapeutic target for Alzheimer disease. J Biol Chem 286(7):5215–5221

    PubMed  CAS  Google Scholar 

  • Chidambara Murthy KN, Jayaprakasha GK, Singh RP (2002) Studies on antioxidant activity of pomegranate (Punica granatum) peel extract using in vivo models. J Agric Food Chem 50:4791–4795

    PubMed  Google Scholar 

  • Chow CK, Tappel AL (1971) An enzymatic protective mechanism against lipid peroxidation damage to lungs of ozone-exposed rats. Lipids 7:518–524

    Google Scholar 

  • Costall B, Naylor RJ (1974) On catalepsy and catatonia and the predictability of the catalepsy test for neuroleptic activity. Psychopharmacologia 34:233–241

    PubMed  CAS  Google Scholar 

  • Flohe L, Gunzler WA (1984) Assays of glutathione peroxidase. Methods Enzymol 105:114–121

    PubMed  CAS  Google Scholar 

  • Freyssin A, Page G, Fauconneau B, Rioux Bilan A (2018) Natural polyphenols effects on protein aggregates in Alzheimer’s and Parkinson’s prion-like diseases. Neural Regen Res 13(6):955–961

    PubMed  PubMed Central  Google Scholar 

  • Ghebremedhin E, Del Tredici K, Vuksic M, Rüb U, Thal DR, Burbach GJ et al (2006) Relationship of apolipoprotein E and age at onset to Parkinson disease neuropathology. J Neuropathol Exp Neurol 65(2):116–123

  • Golchin L, Shabani M, Harandi S, Razavinasab M (2015) Pistachio supplementation attenuates motor and cognition impairments induced by cisplatin or vincristine in rats. Adv Biomed Res 4:92

    PubMed  PubMed Central  Google Scholar 

  • Gu Y, Nieves JW, Stern Y, Luchsinger JA, Scarmeas N (2010) Food combination and Alzheimer disease risk: a protective diet. Arch Neurol 67:699–706

    PubMed  PubMed Central  Google Scholar 

  • Haider S, Batool Z, Ahmad S, Siddiqui RA, Haleem DJ (2018) Walnut supplementation reverses the scopolamine-induced memory impairment by restoration of cholinergic function via mitigating oxidative stress in rats: a potential therapeutic intervention for age related neurodegenerative disorders. Metab Brain Dis 33:39–51

    PubMed  CAS  Google Scholar 

  • Haider S, Naqvi F, Batool Z, Tabassum S, Sadir S, Liaquat L et al (2015) Pretreatment with curcumin attenuates anxiety while strengthens memory performance after one short stress experience in male rats. Brain Res Bull 115:1–8

    PubMed  CAS  Google Scholar 

  • Haleem DJ, Samad N, Haleem MA (2007) Reversal of haloperidol-induced VCMs and supersensitive somatodendritic serotonergic response by buspirone in rats. Pharmacol Biochem Behav 87:115–121

    PubMed  CAS  Google Scholar 

  • Jiang T, Sun Q, Chen S (2016) Oxidative stress: A major pathogenesis and potential therapeutic target of antioxidative agents in Parkinson’s disease and Alzheimer’s disease. Prog Neurobiol 147:1–19

    PubMed  CAS  Google Scholar 

  • Khan Z, Ali SA (2018) Oxidative stress-related biomarkers in Parkinson’s disease: A systematic review and meta-analysis. Iran J Neurol 17(3):137–144

    PubMed  PubMed Central  Google Scholar 

  • Kim J, Basak JM, Holtzman DM (2009) The role of apolipoprotein E in Alzheimer’s disease. Neuron 63(3):287–303

    PubMed  PubMed Central  CAS  Google Scholar 

  • Kondziela W (1964) A new method for the measurement of muscle relaxation in white mice. Arch Int Pharmacodyn Ther 152:277–284

    Google Scholar 

  • Madiha S, Batool Z, Tabassum S, Liaquat L, Sadir S, Perveen T et al (2018) Therapeutic effects of curcuma longa against rotenone-induced gross motor skills deficits in rats. Pak J Zool 50:1245–1256

    CAS  Google Scholar 

  • Madiha S, Haider S (2017) Imbalance between dopaminergic and cholinergic neurotransmission following rotenone administration suggestive of Parkinson’s-like symptoms in male rats [abstract]. Mov Disord 32:S278–S280

    Google Scholar 

  • Madiha S, Haider S (2019) Curcumin restores rotenone induced depressive-like symptoms in animal model of neurotoxicity: assessment by social interaction test and sucrose preference test. Metab Brain Dis 34(1):297–308

    PubMed  CAS  Google Scholar 

  • Madiha S, Tabassum S, Batool Z, Liaquat L, Sadir S, Shahzad S et al (2017) Assessment of gait dynamics in rotenone-induced rat model of Parkinson’s disease by footprint method. Pak J Pharm Sci 30:943–948

    PubMed  CAS  Google Scholar 

  • Moon Y, Lee KH, Park JH, Geum D, Kim K (2005) Mitochondrial membrane depolarization and the selective death of dopaminergic neurons by rotenone: protective effect of coenzyme Q10. J Neurochem 93:1199–1208

    PubMed  CAS  Google Scholar 

  • Naidu RN, Shankar B, Dsouza U (2013) Effect of long term administration of aluminium chloride on oxidative stress and acetylcholinesterase activity in rat brains. Int J Pharm Biol Sci 3:616–622

    Google Scholar 

  • Nascimento-Ferreira I, Nóbrega C, VasconcelosFerreira A, Onofre I, Albuquerque D, Aveleira C, Hirai H, Déglon N, Pereira de Almeida L (2013) Beclin 1 mitigates motor and neuropathological deficits in genetic mouse models of Machado-Joseph disease. Brain 136:2173–2188

  • Paslawski W, Zareba-Paslawska J, Zhang X, Hölzl K, Wadensten H, Shariatgorji M et al (2019) α-synuclein-lipoprotein interactions and elevated ApoE level in cerebrospinal fluid from Parkinson’s disease patients. Proc Natl Acad Sci U S A 116(30):15226–15235

    PubMed  PubMed Central  CAS  Google Scholar 

  • Paul KC, Rausch R, Creek MM, Sinsheimer JS, Bronstein JM, Bordelon Y et al (2016) APOE, MAPT, and COMT and Parkinson’s disease susceptibility and cognitive symptom progression. J Parkinsons Dis 6(2):349–359

    PubMed  PubMed Central  CAS  Google Scholar 

  • Pribis P, Shukitt-Hale B (2014) Cognition: the new frontier for nuts and berries. Am J Clin Nutr 100:347S–352S

    PubMed  CAS  Google Scholar 

  • Puig MV, Rose J, Schmidt R, Freund N (2014) Dopamine modulation of learning and memory in the prefrontal cortex: insights from studies in primates, rodents, and birds. Front Neural Circuits 8:93

    PubMed  PubMed Central  Google Scholar 

  • Shahraki J, Zareh M, Kamalinejad M, Pourahmad J (2014) Cytoprotective effects of hydrophilic and lipophilic extracts of Pistacia vera against oxidative versus carbonyl stress in rat hepatocytes. Iran J Pharma Res: IJPR 13:1263–1277

    Google Scholar 

  • Sharma D, Wani W, Sunkaria A, Kandimalla RJ, Sharma RK, Verma D et al (2016) Quercetin attenuates neuronal death against aluminum-induced neurodegeneration in the rat hippocampus. Neuroscience 324:163–176

    PubMed  CAS  Google Scholar 

  • Shukitt-Hale B, Cheng V, Joseph JA (2009) Effects of blackberries on motor and cognitive function in aged rats. Nutr Neurosci 12:135–140

    PubMed  CAS  Google Scholar 

  • Sian J, Dexter DT, Lees AJ, Daniel S, Agid Y, Javoy-Agid F et al (1994) Alterations in glutathione levels in Parkinson’s disease and other neurodegenerative disorders affecting basal ganglia. Ann Neurol 36:348–355

    PubMed  CAS  Google Scholar 

  • Sinha AK (1972) Colorimetric assay of catalase. Anal Biochem 47:389–394

    PubMed  CAS  Google Scholar 

  • Srivastav S, Fatima M, Mondal AC (2017) Important medicinal herbs in Parkinson’s disease pharmacotherapy. Biomed Pharmacother 92:856–863

    PubMed  CAS  Google Scholar 

  • Stempak D, Dallas S, Klein J, Bendayan R, Koren G, Baruchel S (2001) Glutathione stability in whole blood: effects of various deproteinizing acids. Ther Drug Monit 23(5):542–549

    PubMed  CAS  Google Scholar 

  • Švob Štrac D, Pivac N, Mück-Šeler D (2016) The serotonergic system and cognitive function. Transl Neurosci 7(1):35–49

    PubMed  PubMed Central  Google Scholar 

  • Tabrez S, Jabir NR, Shakil S, Greig NH, Alam Q, Abuzenadah AM et al (2012) A synopsis on the role of tyrosine hydroxylase in Parkinson’s disease. CNS Neurol Disord Drug Targets 11(4):395–409

  • Takeda M, Martínez R, Kudo T, Tanaka T, Okochi M, Tagami S et al (2010) Apolipoprotein E and central nervous system disorders: reviews of clinical findings. Psychiatry Clin Neurosci 64(6):592–607

    PubMed  CAS  Google Scholar 

  • Tomaino A, Martorana M, Arcoraci T, Monteleone D, Giovinazzo C, Saija A (2010) Antioxidant activity and phenolic profile of pistachio (Pistacia vera L., variety Bronte) seeds and skins. Biochimie 92:1115–1122

    PubMed  CAS  Google Scholar 

  • Vauzour D, VafeiAdou K, Spencer JP (2007) Inhibition of the formation of the neurotoxin 5-S-cysteinyl-dopamine by polyphenols. Biochem Biophys Res Commun 362:340–346

    PubMed  CAS  Google Scholar 

  • Yanpallewar SU, Rai S, Kumar M, Acharya SB (2004) Evaluation of antioxidant and neuroprotective effect of Ocimum sanctum on transient cerebral ischemia and long-term cerebral hypoperfusion. Pharmacol Biochem Behav 79:155–164

    PubMed  CAS  Google Scholar 

  • Yehuda S, Rabinovitz S, Mostofsky DI (2005) Essential fatty acids and the brain: from infancy to aging. Neurobiol Aging 26:98–102

    PubMed  Google Scholar 

  • Yin Y, Wang Z (2018) ApoE and Neurodegenerative Diseases in Aging. In: Wang Z (ed) Aging and Aging-Related Diseases, vol 1086. Springer, Singapore Advances in Experimental Medicine and Biology

Download references

Acknowledgements

Authors gratefully acknowledge funding support from The Dean, Faculty of Science, University of Karachi, Karachi, Pakistan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saida Haider.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haider, S., Madiha, S. & Batool, Z. Amelioration of motor and non-motor deficits and increased striatal APoE levels highlight the beneficial role of pistachio supplementation in rotenone-induced rat model of PD. Metab Brain Dis 35, 1189–1200 (2020). https://doi.org/10.1007/s11011-020-00584-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-020-00584-5

Keywords

Navigation