Skip to main content
Log in

The Combined Environmental Stress on the Leaves of Olea europaea L. and the Relief Mechanism Through Biosynthesis of Certain Secondary Metabolites

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Biosynthesis of certain secondary metabolites, as a relief response to the severe environmental stress of the mediterranean summer, is a major reaction of the plants thriving in areas with mediterranean-type climate. Some of these compounds are of great importance to both humans and the environment. Tracing of certain secondary metabolites, after the exposure of Olea europaea L. individuals to stressing environmental conditions, is the aim of this investigation. Our two-day cycle, detailed data indicate that soon after the summer mid-day severe environmental stress, a threefold increase (+ 256%) in reactive oxygen species accumulation is recorded in the leaves while the absorbance of the photosynthetic pigments is drastically reduced (up to − 60%). Then, the secondary metabolic pathway of the shikimic acid is activated and the expression level of l-Dopa decarboxylase—an enzyme common to plants and animals, bisconnected to this pathway—is rapidly increased in order to metabolize the highly toxic l-Dopa or the amino acid l-tyrosine, to dopamine or tyramine, respectively. These reactions promote, at a certain period of the 24-h cycle, the biosynthesis of oleuropein (41% increase), an antioxidant phenolic compound possessing a wide range of important pharmacological properties. By the evening twilight, when the environmental conditions turn to mild, the cell functions reset to normal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Chart 1
Chart 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alagna F, Geu-Flores F, Kries H, Francesco P, Baldoni L, O’Connor SE, Osbourn A (2016) Identification and Characterization of the Iridoid Synthase Involved in Oleuropein Biosynthesis in Olive (Olea europaea) Fruits. The J Biol Chem 291(11):5542–5554

    CAS  PubMed  Google Scholar 

  • Andreadou I, Iliodromitis EK, Mikros E, Constantinou M, Agalias A, Magiatis P, Skaltsounis AL, Kamber E, Tsantili-Kakoulidou A, Kremastinos DT (2006) The olive constituent oleuropein exhibits anti-ischemic, antioxidative, and hypolipidemic effects in anesthetized rabbits. J Nutr 136:2213–2219

    CAS  PubMed  Google Scholar 

  • Andreadou I, Sigala F, Iliodromitis EK, Papaefthimiou M, Sigalas C, Aligiannis N, Savvari P, Gorgoulis V, Papalabros E, Kremastinos DT (2007) Acute doxorubicin cardiotoxicity is successfully treated with the phytochemical oleuropein through suppression of oxidative and nitrosative stress. J Mol Cell Cardiol 42:549–558

    CAS  PubMed  Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barlow RB, Dixon ROD (1973) Choline Acetyltransferase in the Nettle Urtica dioica L. Biochem J 132:15–18

    CAS  PubMed  PubMed Central  Google Scholar 

  • Batteiger B, Newhall WJT, Jones RB (1982) The use of Tween 20 as a blocking agent in the immunological detection of proteins transferred to nitrocellulose membranes. J Immunol Methods 55:297–307

    CAS  PubMed  Google Scholar 

  • Benoit-Marand M, Jaber M, Gonon F (2000) Release and elimination of dopamine in vivo in mice lacking the dopamine transporter: functional consequences. Eur J Neurosci 12:2985

    CAS  PubMed  Google Scholar 

  • Borchert R (1985) Calcium-induced pattern of calcium oxalate crystals in isolated leaflets of Gleditsia triacanthos L. and Albizia julibrissin Durazz. Planta 165:301–310

    CAS  PubMed  Google Scholar 

  • Bors W, Heller W, Michel C, Saran M (1990) Flavonoids as antioxidants: determination of radical-scavenging efficiencies. In: Packer L, Glazer AN (eds) Methods in enzymology. Academic Press, New York, pp 343–355

    Google Scholar 

  • Bossinakou KS, Fragoulis EG (1996) Purification and characterisation of L-DOPA decarboxylase from pharate pupae of Ceratitis capitata. A comparison with the enzyme purified from the white prepupae. Comp Biochem Physiol B 113(2):213–220

    CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Ann Biochem 72:248–254

    CAS  Google Scholar 

  • Brito C, Dinis L-T, Moutinho-Pereira J-M, Correia CM (2019) Drought stress effects and olive tree acclimation under a changing climate. Plants 8(7):232. https://doi.org/10.3390/plants8070232

    Article  CAS  PubMed Central  Google Scholar 

  • Christodoulakis NS (1992) Structural diversity and adaptations in some mediterranean evergreen Sclerophyllous species. Environ Exp Bot 32:295–305

    Google Scholar 

  • Christodoulakis NS, Bazos I (1990) Leaf anatomy of three seasonally dimorphic subshrubs. Acta Oecol 11(2):190–195

    Google Scholar 

  • Christodoulakis NS, Fasseas C (1991) Seasonal dimorphism of Phlomis fruticosa under controlled environmental conditions. Acta Oecol 12(3):323–330

    Google Scholar 

  • Christodoulakis NS, Kogia D, Mavroeidi D, Fasseas C (2010) Anatomical and cytochemical investigation on the leaf of Teucrium polium L., a pharmaceutical shrub of the Greek phryganic formations. J Biol Res 14:199–209

    Google Scholar 

  • Christodoulakis NS, Lampri PN, Fasseas C (2009) Structural and cytochemical investigation on the leaf of silverleaf nightshade (Solanum eleagnifolium), a drought resistant alien weed of the Greek Flora. Aust J Bot 57:432–438

    Google Scholar 

  • Dafni A (1991) Sclerophylly, chemical defense and the evolution of the Mediterranean maquis species. Fl Veg Mundi 9:167–174

    Google Scholar 

  • Dement WA, Mooney HA (1974) Seasonal variation in the production of tannins and cyanogenic glucosides in the chaparral shrub, Heteromeles arbutifolia. Oecologia (Berl) 15:65–76

    Google Scholar 

  • Demmig-Adams B, Adams WW III, Winter K, Meyer A, Schreiber U, Pereira JS, Kroger A, Czygan EC, Lange OL (1989) Photochemical efficiency of photosystem II, photon yield of O2 evolution, photosynthetic capacity, and carotenoid composition during the midday depression of net CO2 uptake in Arbutus unedo growing in Portugal. Planta 177:377–387

    CAS  PubMed  Google Scholar 

  • Eldadah MK, Schwartz PH, Harrison R, Newth CJ (1991) Pharmacokinetics of dopamine in infants and children. Crit Care Med 19(8):1008–1011

    CAS  PubMed  Google Scholar 

  • Fahn A, Cutler DF (1992) Xerophytes. Encyclopedia of plant anatomy—Gebrüder Borntraeger, Berlin.

  • Faria T, García-Plazaola JI, Abadía A, Cerasoli S, Pereira JS, Chaves MM (1996) Diurnal changes in photoprotective mechanisms in leaves of cork oak (Quercus suber L.) during summer. Tree Physiol 16:115–123

    PubMed  Google Scholar 

  • Faria T, Silvério D, Breia E, Cabral R, Abadía A, Abadía J, Pereira JS, Chaves MM (1998) Differences in the response of carbon assimilation to summer stress (water deficits, high light and temperature) in four Mediterranean tree species. Physiol Plant 102:419–428

    CAS  Google Scholar 

  • Foyer CH, Noctor G (2013) Redox Signaling in Plants. Antioxid Redox Signal 18:2087–2090

    CAS  PubMed  Google Scholar 

  • Franceschi VR (1989) Calcium oxalate formation is a rapid and reversible process in Lemna minor L. Protoplasma 148:130–137

    Google Scholar 

  • Franceschi VR, Horner HT Jr (1980) Calcium oxalate crystals in plants. Bot Rev 46(4):361–427

    CAS  Google Scholar 

  • Frank E (1972) The formation of crystal idioblasts in Canavalia ensiformis DC at different levels of calcium supply. Z Pflanzenphysiol 67:350–358

    CAS  Google Scholar 

  • Fredrickson WR, and S Group, Inc. (2000) Method and Composition for Antiviral Therapy with Olive Leaves. U.S. Patent. 6, 117: 884.

  • Frohnmeyer H, Loyall L, Blatt MR, Grabov A (1999) Millisecond UV-B irradiation evokes prolonged elevation of cytosolic-free Ca2+ and stimulates gene expression in transgenic parsley cell cultures. Plant J 20:109–117

    CAS  PubMed  Google Scholar 

  • Gea-Izquierdo G, Guibal F, Joffre R, Ourcival JM, Simioni G, Guiot J (2015) Modelling the climatic drivers determining photosynthesis and carbon allocation in evergreen Mediterranean forests using multiproxy long time series. Biogeosciences 12:3695–3712

    Google Scholar 

  • Glass ADM, Dunlop J (1974) Influence of phenolic acids on ion uptake. IV. Depolarization of membrane potentials Plant Physiol 54:855–858

    CAS  PubMed  Google Scholar 

  • Iriti M (2013) Plant neurobiology, a fascinating perspective in the field of research on plant secondary metabolites. Int J Mol Sci 14(6):10819–10821

    PubMed  PubMed Central  Google Scholar 

  • Isah T (2019) Stress and defence responses in plant secondary metabolites production. Biol Res 52:39. https://doi.org/10.1186/s40659-019-0246-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaffe MJ (1970) Evidence for the regulation of phytochrome-mediated processes in bean roots by the neurohumor, acetylcholine. Plant Physiol 46:768–777

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiménez-Herrera R, Pacheco-López B, Peragón J (2019) Water stress, irrigation and concentrations of pentacyclic triterpenes and phenols in Olea europaea L. cv. Picual Olive Trees. Antioxidants (Basel) 8(8):294. https://doi.org/10.3390/antiox8080294

    Article  CAS  Google Scholar 

  • Kanazawa K, Sakakibara H (2000) High content of dopamine, a strong antioxidant, in Cavendish banana. J Agric Food Chem 48:844–848

    CAS  PubMed  Google Scholar 

  • Karabourniotis G, Papastergiou N, Kabanopoulou E, Fasseas C (1994) Foliar sclereids of Olea europaea may function as optical fibres. Can J Bot 72:330–336

    Google Scholar 

  • Katsiki M, Chondrogianni N, Chinou I, Rivett AJ, Gonos ES (2007) The olive constituent oleuropein exhibits proteasome stimulatory properties in vitro and confers life span extension of human embryonic fibroblasts. Rejuv Res 10:157–172

    CAS  Google Scholar 

  • Kiritsakis A, Markakis P (1988) Olive oil: A review. Adv Food Nutr Res 31:453–482

    Google Scholar 

  • Kostelenos G, Kiritsakis A (2017) Olive tree history and evolution. In: Kiritsakis A, Shahidi F (eds) Olives and olive oil as functional foods: bioactivity, chemistry and processing. Wiley, New Jersey, pp 1–12

    Google Scholar 

  • Kratsch HA, Wise RR (2000) The ultrastructure of chilling stress. Plant Cell Environ 23(4):337–350

    CAS  Google Scholar 

  • Kulma A, Szopa J (2007) Catecholamines are active compounds in plants. Plant Sci 172:433–440

    CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    CAS  PubMed  Google Scholar 

  • Lange OL, Lange R (1963) Untersuchungen über BIattemperatueen, Transpiration und Ititzeresistenz an Pflanzen mediterraner Standorte (Costa Brava, Spanien). Flora 153:387–425

    Google Scholar 

  • Larcher W (1961) Jahresgang des Assimilations- und Respirationsvermögens yon Olea europaea L. ssp. sativa Hoff.et Link., Quercus ilex L. und Quercus pubescens Willd. Aus dem ndrdlichen Gardaseegebiet Planta 56:575–606

    CAS  Google Scholar 

  • Larcher W (2000) Temperature stress and survival ability of Mediterranean schlerophyllous plants. Plant Bios 134:279–295

    Google Scholar 

  • Larcher W, Mair B (1969) Die Temperaturresistenz air ökophysiologisches Konstitutionsmerkmal. Quercus itex und andere Eichenarten des Mittelmeergebietes. Oecol Plant 4:347–376

    Google Scholar 

  • Lemonakis N, Poudyal H, Halabalaki M, Brown L, Tsarbopoulos A, Skaltsounis AL, Gikas E (2017) The LC-MS-based metabolomics of hydroxytyrosol administration in rats reveals amelioration of the metabolic syndrome. J Chromatogr B 1041–1042:45–59

    Google Scholar 

  • Lianopoulou V, Patakas A, Bosabalidis AM (2015) Seasonal dimorphism and winter chilling stress in Thymus sibthorpii. Biol Plant 58:139–146

    Google Scholar 

  • Mahan JR, McMichae BL, Wanjura DF (1995) Methods for reducing the adverse effects of temperature stress on plants: a review. Environ Exp Bot 35:251–258

    Google Scholar 

  • Mancuso S, Azzarello E (2002) Heat tolerance in olive. Adv Hortic Sci 16(3–4):125–130

    Google Scholar 

  • Manivannan P, Abdul Jaleel C, Sankar B, Kishorekumar A, Somasundaram R, Lakshmanan GMA, Panneerselvam RN (2007) Growth, biochemical modifications and proline metabolism in Helianthus annuus L. as induced by drought stress. Colloids Surf, B 59:141–149

    CAS  Google Scholar 

  • Marbach I, Mayer AM (1974) Permeability of seed coats to water as related to drying conditions and metabolism of phenolics. Plant Physiol 54:817–820

    CAS  PubMed  PubMed Central  Google Scholar 

  • Margaris NS (1981) Adaptive strategies in plants dominating Mediterranean-type ecosystems. In: Di Castri F, Goodall DW, Specht R (eds) Mediterranean-type shrublands. Elsevier, Amsterdam, pp 239–242

    Google Scholar 

  • Martínez-Ferri E, Balaguer L, Valladares F, Chico JM, Manrique E (2000) Energy dissipation in drought-avoiding and drought-tolerant tree species at midday during the Mediterranean summer. Tree Physiol 20:131–138

    PubMed  Google Scholar 

  • Meletiou-Christou MS, Rhizopolou S, Diamantoglou S (1994) Seasonal changes of carbohydrates, lipids and nitrogen content in sun and shade leaves from four Mediterranean evergreen sclerophylls. Environ Exp Bot 34:129–140

    CAS  Google Scholar 

  • Merra E, Calzaretti G, Bobba A, Storelli MM, Casalino E (2014) Antioxidant role of hydroxytyrosol on oxidative stress in cadmium-intoxicated rats: different effect in spleen and testes. Drug Chem Toxicol 19:1–7

    Google Scholar 

  • Merzlyak MN, Chivkunova OB, Solovchenko AE, Naqvi KR (2008) Light absorption by anthocyanins in juvenile, stressed, and senescing leaves. J Exp Bot 59:3903–3911

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miklavčič Višnjevec A, Valenči V, Hladnik T, Podgornik M, Bandelj D, Hladnik M, Baruca Arbeiter A, Bučar-Miklavčič M, Bešter E, Volk S, Pitnar M, Butinar B (2018) Impact of weather conditions and drought stress on primary and secondary metabolites of olives from Slovenian Istra. Acta Hortic 1199:69–74. https://doi.org/10.17660/ActaHortic.2018.1199.11

    Article  Google Scholar 

  • Mitrakos K (1980) A theory for Mediterranean plant life. Acta Oecol 1(15):245–252

    Google Scholar 

  • Mitrakos K, Christodoulakis NS (1981) Leaf structural diversity in Mediterranean evergreen sclerophylls. In: Margaris NS, Mooney HA (eds) Components of productivity of mediterranean-climate regions-basic and applied aspects. Junk Publishers, Berlin

    Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9(10):490–498

    CAS  PubMed  Google Scholar 

  • Moghe GD, Last RL (2015) Something old, something new: conserved enzymes and the evolution of novelty in plant specialized metabolism. Plant Physiol 169(3):1512–1523

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mooney HA, Dunn EL (1970) Photosynthetic systems of mediterranean-climate shrubs and trees of California and Chile. Am Nat 104:447–453

    Google Scholar 

  • Mooney HA, Dunn EL (1976) Convergent evolution of the mediterranean climate evergreen sclerophyll shrubs. Evolution 24:292–303

    Google Scholar 

  • Munné-Bosch S, Jubany-Mari T, Alegre L (2001) Drought-induced senescence is characterized by a loss of antioxidant de-fences in chloroplasts. Plant Cell Environ 24:1319–1327

    Google Scholar 

  • Munné-Bosch S, Schwarz K, Alegre L (1999) Enhanced formation of α-tocopherol and highly oxidized abietane diterpenesin water-stressed rosemary plants. Plant Physiol 121:1047–1052

    PubMed  PubMed Central  Google Scholar 

  • Nikolakaki A, Christodoulakis NS (2007) Secretory structures and cytochemical investigation of the leaf of Phlomis fruticosa, a seasonally dimorphic subshrub. secreting activity of the leaf-originating calluses. Flora 202:429–436

    Google Scholar 

  • Odjakova M, Hadjiivanova C (1997) Animal neurotransmitter substances in plants. Bulg J Plant Physiol 23:94–102

    CAS  Google Scholar 

  • Omar SH (2010) Oleuropein in olive and its pharmacological effects. Sci Pharm 78(2):133–154

    CAS  PubMed  PubMed Central  Google Scholar 

  • Orshan G (1989) Plant pheno-morphological studies in Mediterranean type ecosystems. Springer, Netherlands

    Google Scholar 

  • Owen RW, Giacosa A, Hull WE, Haubner R, Würtele G, Spiegelhalder B, Bartsch H (2000) Olive oil consumption and health: the possible role of antioxidants. Lancet Oncol 1:107–112

    CAS  PubMed  Google Scholar 

  • Pandey P, Irulappan V, Bagavathiannan MV, Senthil-Kumar M (2017) Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physio-morphological traits. Front Plant Sci 8:537

    PubMed  PubMed Central  Google Scholar 

  • Psaras GK, Christodoulakis NS (1987) Air Pollution Effects on the Ultrastructure of Phlomis fruticosa mesophyll cells. Bull Environ Contam Toxicol 38:610–617

    CAS  PubMed  Google Scholar 

  • Rapoport HF, Fabbri A, Sebastiani L (2016) Olive biology. In: Rugini E, Baldoni L, Muleo R, Sebastiani L (eds) The olive tree genome, compendium of plant genomes. Springer, Cham, pp 13–25

    Google Scholar 

  • Reynolds E (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:19–58

    Google Scholar 

  • Shao W, Yang Y, Zhang Y, Lv C, Ren W, Chen C (2016) Involvement of BcStr2 in methionine biosynthesis, vegetative differentiation, multiple stress tolerance and virulence in Botrytis cinerea. Mol Plant Pathol 17(3):438–447

    CAS  PubMed  Google Scholar 

  • Smirnoff N (1995) Antioxidant systems and plant response to the environment. In: Smirnoff V (ed) Environment and plant metabolism: flexibility and acclimation. BIOS Scientific Publishers, Oxford, pp 217–243

    Google Scholar 

  • Soares AR, Marchiosi R, Siqueira-Soares Rde C, Barbosa de Lima R, Dantas dos Santos W, Ferrarese-Filho O (2014) The role of L-DOPA in plants. Plant Signal Behav 9:e28275. https://doi.org/10.4161/psb.28275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stanković M, Ćurčić S, Zlatić N, Bojović B (2017) Ecological variability of the phenolic compounds of Olea europaea L. leaves from natural habitats and cultivated conditions. Biotechnol Biotechnol Equip 31(3):499–504. https://doi.org/10.1080/13102818.2016.1275804

    Article  CAS  Google Scholar 

  • Stefi AL, Margaritis LH, Christodoulakis NS (2017) The aftermath of long-term exposure to non-ionizing radiation on laboratory cultivated pine plants (Pinus halepensis M.). Flora 234:173–186

    Google Scholar 

  • Stefi AL, Vassilacopoulou D, Christodoulakis NS (2019) Environmentally stressed summer leaves of the seasonally dimorphic Phlomis fruticosa and the relief through the L-Dopa decarboxylase (DDC). Flora 251:11–19

    Google Scholar 

  • Stefi AL, Vassilacopoulou D, Margaritis LH, Christodoulakis NS (2018) Oxidative stress and an animal neurotransmitter synthesizing enzyme in the leaves of wild growing myrtle after exposure to GSM radiation. Flora 243:67–76

    Google Scholar 

  • Stephanou M, Manetas Y (1997) The effects of seasons, exposure, enhanced UV-B radiation, and water stress on leaf epicuticular and internal UV-B absorbing capacity of Cistus creticus: a Mediterranean field study. J Exp Bot 48(11):1977–1985

    CAS  Google Scholar 

  • Sun W, Frost B, Liu J (2017) Oleuropein, unexpected benefits! Oncotarget 8(11):17409

    PubMed  PubMed Central  Google Scholar 

  • Sunkar R (2010) Review: MicroRNAs with macro-effects on plant stress responses. Semin Cell Dev Biol 21:805–811

    CAS  PubMed  Google Scholar 

  • Suzuki N, Koussevitzky S, Mittler R, Miller G (2012) ROS and redox signaling in the response of plants to abiotic stress. Plant Cell Environ 35:259–270

    CAS  PubMed  Google Scholar 

  • Tocher RD, Tocher CS (1972) Dopa decarboxylase in Cytisus scoparius. Phytochemistry 11:1661–1667

    CAS  Google Scholar 

  • Torres de Pinedo A, Peñalver P, Morales JC (2007) Synthesis and evaluation of new phenolic-based antioxidants: structure-activity relationship. Food Chem 103:55–61

    CAS  Google Scholar 

  • Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354

    CAS  PubMed  Google Scholar 

  • Trabelsi L, Gargouir K, Ben Hassena A, Mbadra C, Ghrab M, Ncube B, Van Staden J, Gargouri R (2019) Impact of drought and salinity on olive water status and physiological performance in an arid climate. Agric Water Manag 213:749–759. https://doi.org/10.1016/j.agwat.2018.11.025

    Article  Google Scholar 

  • Trethewey RN, Krotzky AJ (2007) Metabolic profiling: applications in plant science. In: Lindon J, Nicholson J, Holmes E (eds) Handbook of metabonomics and metabolomics. Elsevier B.V, Amsterdam, pp 443–487

    Google Scholar 

  • Tripoli E, Giammanco M, Tabacchi G, Di Majo D, Giammanco S, La Guardia M (2005) The phenolic composition of olive oil: structure, biological activity, and beneficial effects on human health. Nutr Res Rev 18:98–112

    CAS  PubMed  Google Scholar 

  • van der Heyden F, Lewis OAM (1989) Seasonal variation in photosynthetic capacity with respect to plant water status of five species of the mediterranean climate region of South Africa. S Afr J Bot 55(5):509–515

    Google Scholar 

  • VanDenBerg CM, Blob LF, Kemper EM, Azzaro AJ (2003) Tyramine pharmacokinetics and reduced bioavailability with food. J Pharmacol Clin Toxicol 43:604–609

    CAS  Google Scholar 

  • Vilaplana-Pérez C, Auñón D, García-Flores LA, Gil-Izquierdo A (2014) Hydroxytyrosol and Potential Uses in Cardiovascular Diseases, Cancer, and AIDS. Front Nutr 1:18

    PubMed  PubMed Central  Google Scholar 

  • Visioli F, Bellosta S, Galli C (1998) Oleuropein, the bitter principles of olives, enhances nitric oxide production by mouse macrophages. Life Sci 62:541–546

    CAS  PubMed  Google Scholar 

  • Visioli F, Poli A, Galli C (2002) Antioxidant and other biological activities of phenols from olives and olive oil. Med Res Rev 22:65–75

    CAS  PubMed  Google Scholar 

  • Wellburn AR, Majernik O, Wellburn FAM (1972) Effects of SO2 and NO2 polluted air upon the ultrastructure of Chloroplasts. Environ Pollut 3:37–49

    CAS  Google Scholar 

  • Werner C, Correira O, Beyschlag W (1999) Two different strategies of Mediterranean macchia plants to avoid photoinhibitory damage by excessive radiation level during summer drought. Acta Oecol 20:15–23

    Google Scholar 

  • Yamamoto Y, Aminaka R, Yoshioka M, Khatoon M, Komayama K, Takenaka D, Yamashita A, Nijo N, Inagawa K, Morita N, Sasaki T, Yamamoto Y (2008) Quality control of photosystem II: impact of light and heat stresses. Photosynth Res 98(1–3):589–608

    CAS  PubMed  Google Scholar 

  • Yang L, Wen KS, Ruan X, Zhao YX, Wei F, Wang Q (2018) Response of plant secondary metabolites to environmental factors. Molecules 23(4):762. https://doi.org/10.3390/molecules23040762

    Article  CAS  PubMed Central  Google Scholar 

  • Zhang D-W, Yuan S, Xu F, Zhu F, Yuan M, Ye HX, Guo HQ, Lv X, Yin Y, Lin HH (2016) Light intensity affects chlorophyll synthesis during greening process by metabolite signal from mitochondrial alternative oxidase in Arabidopsis. Plant Cell Environ 39:12–25

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank Professor Maria Triantaphyllou, for providing the facility of the JEOL JSM-6360 Scanning Electron Microscope and Konstantina Mitsigiorgi, for technical assistance. This research is co-financed by Greece and the European Union (European Social Fund- ESF) through the Operational Programme «Human Resources Development, Education and Lifelong Learning» in the context of the project “Reinforcement of Postdoctoral Researchers—2nd Cycle” (MIS-5033021), implemented by the State Scholarships Foundation (ΙΚΥ) (Dr A.L.Stefi). Dr. A. Argyropoulou acknowledges financial support from IKY scholarships program, co-financed by the Greek National Funds and the European Union (European Social Fund—ESF) through the action “Reinforcement of Postdoctoral Researchers—1st cycle,” in the framework of Operational Program “Human Resources Development Program, Education and Lifelong Learning” of the National Strategic Reference Framework 2014–2020. The present research was co-funded by the European Union (ERDF) and Greek National funds, through the Operational Program "Competitiveness, Entrepreneurship and Innovation" 2014–2020 (EPAnEK), under the call “RESEARCH–CREATE–INNOVATE” (project code: 03816).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolaos S. Christodoulakis.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Research Involving Human and Animal Rights

No experiments on human subjects or other animals were executed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stefi, A.L., Vassilacopoulou, D., Routsi, E. et al. The Combined Environmental Stress on the Leaves of Olea europaea L. and the Relief Mechanism Through Biosynthesis of Certain Secondary Metabolites. J Plant Growth Regul 40, 1044–1059 (2021). https://doi.org/10.1007/s00344-020-10162-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-020-10162-9

Keywords

Navigation