Skip to main content

Advertisement

Log in

Channels that Cooperate with TRPV4 in the Brain

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Transient receptor potential vanilloid 4 (TRPV4) is a nonselective Ca2+-permeable cation channel that is a member of the TRP channel family. It is clear that TRPV4 channels are broadly expressed in the brain. As they are expressed on the plasma membrane, they interact with other channels and play a crucial role in nervous system activity. Under some pathological conditions, TRPV4 channels are upregulated and sensitized via cellular signaling pathways, and this can cause nervous system diseases. In this review, we focus on receptors that cooperate with TRPV4, including large-conductance Ca2+-activated K+(BKca) channels, N-methyl-D-aspartate receptors (NMDARs), α-amino-3-hydroxy-5-methyl-4-isoxazole-propionate receptors (AMPARs), inositol 1,4,5-trisphosphate receptors (IP3Rs), ryanodine receptors (RyRs), aquaporin 4 (AQP4), and other potential cooperative receptors in the brain. The data demonstrate how these channels work together to cause nervous system diseases under pathological conditions. The aim of this review was to discuss the receptors and signaling pathways related to TRPV4 based on recent data on the important physiological functions of TRPV4 channels to provide new clues for future studies and prospective therapeutic targets for related brain diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Agre P, Bonhivers M, Borgnia MJ (1998) The aquaporins, blueprints for cellular plumbing systems. J Biol Chem 273:14659–14662

    CAS  PubMed  Google Scholar 

  • Akiyama T, Ivanov M, Nagamine M, Davoodi A, Carstens MI, Ikoma A, Cevikbas F, Kempkes C, Buddenkotte J, Steinhoff M, Carstens E (2016) Involvement of TRPV4 in serotonin-evoked scratching. J Invest Dermatol 136:154–160

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alessandri-Haber N, Yeh JJ, Boyd AE, Parada CA, Chen X, Reichling DB, Levine JD (2003) Hypotonicity induces TRPV4-mediated nociception in rat. Neuron 39:497–511

    CAS  PubMed  Google Scholar 

  • Alessandri-Haber N, Joseph E, Dina OA, Liedtke W, Levine JD (2005) TRPV4 mediates pain-related behavior induced by mild hypertonic stimuli in the presence of inflammatory mediator. Pain 118:70–79

    CAS  PubMed  Google Scholar 

  • Arredondo Zamarripa D, Noguez Imm R, Bautista Cortes AM, Vazquez Ruiz O, Bernardini M, Fiorio Pla A, Gkika D, Prevarskaya N, Lopez-Casillas F, Liedtke W, Clapp C, Thebault S (2017) Dual contribution of TRPV4 antagonism in the regulatory effect of vasoinhibins on blood-retinal barrier permeability: diabetic milieu makes a difference. Sci Rep 7:13094

    PubMed  PubMed Central  Google Scholar 

  • Bai JZ, Lipski J (2014) Involvement of TRPV4 channels in Abeta(40)-induced hippocampal cell death and astrocytic Ca(2+) signalling. Neurotoxicology 41:64–72

    CAS  PubMed  Google Scholar 

  • Balschun D, Zuschratter W, Wetzel W (2006) Allosteric enhancement of metabotropic glutamate receptor 5 function promotes spatial memory. Neuroscience 142:691–702

    CAS  PubMed  Google Scholar 

  • Barker GR, Bashir ZI, Brown MW, Warburton EC (2006) A temporally distinct role for group I and group II metabotropic glutamate receptors in object recognition memory. Learn Mem 13:178–186

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barrett JN, Rincon S, Singh J, Matthewman C, Pasos J, Barrett EF, Rajguru SM (2018) Pulsed infrared releases Ca(2+) from the endoplasmic reticulum of cultured spiral ganglion neurons. J Neurophysiol 120:509–524

    CAS  PubMed  PubMed Central  Google Scholar 

  • Benfenati V, Amiry-Moghaddam M, Caprini M, Mylonakou MN, Rapisarda C, Ottersen OP, Ferroni S (2007) Expression and functional characterization of transient receptor potential vanilloid-related channel 4 (TRPV4) in rat cortical astrocytes. Neuroscience 148:876–892

    CAS  PubMed  Google Scholar 

  • Benfenati V, Caprini M, Dovizio M, Mylonakou MN, Ferroni S, Ottersen OP, Amiry-Moghaddam M (2011) An aquaporin-4/transient receptor potential vanilloid 4 (AQP4/TRPV4) complex is essential for cell-volume control in astrocytes. Proc Natl Acad Sci U S A 108:2563–2568

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bezprozvanny I (2011) Role of inositol 1,4,5-trisphosphate receptors in pathogenesis of Huntington’s disease and spinocerebellar ataxias. Neurochem Res 36:1186–1197

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brini M, Cali T, Ottolini D, Carafoli E (2014) Neuronal calcium signaling: function and dysfunction. Cell Mol Life Sci 71:2787–2814

    CAS  PubMed  Google Scholar 

  • Butenko O, Dzamba D, Benesova J, Honsa P, Benfenati V, Rusnakova V, Ferroni S, Anderova M (2012) The increased activity of TRPV4 channel in the astrocytes of the adult rat hippocampus after cerebral hypoxia/ischemia. PLoS One 7:e39959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen TS, Lai MC, Hung TY, Lin KM, Huang CW, Wu SN (2018) Pioglitazone, a PPAR-gamma activator, stimulates BKCa but suppresses IK M in hippocampal neurons. Front Pharmacol 9:977

    PubMed  PubMed Central  Google Scholar 

  • Cheung KH, Mei L, Mak DO, Hayashi I, Iwatsubo T, Kang DE, Foskett JK (2010) Gain-of-function enhancement of IP3 receptor modal gating by familial Alzheimer’s disease-linked presenilin mutants in human cells and mouse neurons. Sci Signal 3:ra22

    PubMed  PubMed Central  Google Scholar 

  • Chmelova M, Sucha P, Bochin M, Vorisek I, Pivonkova H, Hermanova Z, Anderova M, Vargova L (2019) The role of aquaporin-4 and transient receptor potential vaniloid isoform 4 channels in the development of cytotoxic edema and associated extracellular diffusion parameter changes. Eur J Neurosci 50:1685–1699

    PubMed  Google Scholar 

  • Dahan D, Ducret T, Quignard JF, Marthan R, Savineau JP, Esteve E (2012) Implication of the ryanodine receptor in TRPV4-induced calcium response in pulmonary arterial smooth muscle cells from normoxic and chronically hypoxic rats. Am J Phys Lung Cell Mol Phys 303:L824–L833

    CAS  Google Scholar 

  • Dahl R (2017) A new target for Parkinson’s disease: small molecule SERCA activator CDN1163 ameliorates dyskinesia in 6-OHDA-lesioned rats. Bioorg Med Chem 25:53–57

    CAS  PubMed  Google Scholar 

  • Diaz-Otero JM, Yen TC, Ahmad A, Laimon-Thomson E, Abolibdeh B, Kelly K, Lewis MT, Wiseman RW, Jackson WF, Dorrance AM (2019) Transient receptor potential vanilloid 4 channels are important regulators of parenchymal arteriole dilation and cognitive function. Microcirculation 26:e12535

    PubMed  PubMed Central  Google Scholar 

  • Dong Q, Li J, Wu QF, Zhao N, Qian C, Ding D, Wang BB, Chen L, Guo KF, Fu D, Han B, Liao YH, Du YM (2017) Blockage of transient receptor potential vanilloid 4 alleviates myocardial ischemia/reperfusion injury in mice. Sci Rep 7:42678

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dunn KM, Hill-Eubanks DC, Liedtke WB, Nelson MT (2013) TRPV4 channels stimulate Ca2+-induced Ca2+ release in astrocytic endfeet and amplify neurovascular coupling responses. Proc Natl Acad Sci U S A 110:6157–6162

    CAS  PubMed  PubMed Central  Google Scholar 

  • Earley S, Heppner TJ, Nelson MT, Brayden JE (2005) TRPV4 forms a novel Ca2+ signaling complex with ryanodine receptors and BKCa channels. Circ Res 97:1270–1279

    CAS  PubMed  Google Scholar 

  • Eilert-Olsen M, Hjukse JB, Thoren AE, Tang W, Enger R, Jensen V, Pettersen KH, and Nagelhus EA. 2019. Astroglial endfeet exhibit distinct Ca(2+) signals during hypoosmotic conditions, Glia

  • Fecto F, Shi Y, Huda R, Martina M, Siddique T, Deng HX (2011) Mutant TRPV4-mediated toxicity is linked to increased constitutive function in axonal neuropathies. J Biol Chem 286:17281–17291

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fedorenko OA, Popugaeva E, Enomoto M, Stathopulos PB, Ikura M, Bezprozvanny I (2014) Intracellular calcium channels: inositol-1,4,5-trisphosphate receptors. Eur J Pharmacol 739:39–48

    CAS  PubMed  Google Scholar 

  • Fernandes J, Lorenzo IM, Andrade YN, Garcia-Elias A, Serra SA, Fernández-Fernández JM, Valverde MA (2008) IP3 sensitizes TRPV4 channel to the mechano- and osmotransducing messenger 5′-6′-epoxyeicosatrienoic acid. J Gen Physiol 131:i2

    PubMed  Google Scholar 

  • Filosa JA, Yao X, Rath G (2013) TRPV4 and the regulation of vascular tone. J Cardiovasc Pharmacol 61:113–119

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia DCG, Lopes MJ, Mbiakop UC, Lemos VS, Cortes SF (2019) Activation of Cav1.2 and BKCa is involved in the downregulation of caffeine-induced contraction in mice mesenteric arteries. Life Sci 231:116555

    CAS  PubMed  Google Scholar 

  • Garcia-Elias A, Lorenzo IM, Vicente R, Valverde MA (2008) IP3 receptor binds to and sensitizes TRPV4 channel to osmotic stimuli via a calmodulin-binding site. J Biol Chem 283:31284–31288

    CAS  PubMed  Google Scholar 

  • Garcia-Elias A, Mrkonjic S, Jung C, Pardo-Pastor C, Vicente R, Valverde MA (2014) The TRPV4 channel. Handb Exp Pharmacol 222:293–319

    CAS  PubMed  Google Scholar 

  • Hashad AM, Mazumdar N, Romero M, Nygren A, Bigdely-Shamloo K, Harraz OF, Puglisi JL, Vigmond EJ, Wilson SM, Welsh DG (2017) Interplay among distinct Ca(2+) conductances drives Ca(2+) sparks/spontaneous transient outward currents in rat cerebral arteries. J Physiol 595:1111–1126

    CAS  PubMed  Google Scholar 

  • Heathcote HR, Lee MD, Zhang X, Saunter CD, Wilson C, McCarron JG (2019) Endothelial TRPV4 channels modulate vascular tone by Ca. Br J Pharmacol 176:3297–3317

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hisatsune C, Mikoshiba K (2017) IP3 receptor mutations and brain diseases in human and rodents. J Neurochem 141:790–807

    CAS  PubMed  Google Scholar 

  • Hoshi Y, Okabe K, Shibasaki K, Funatsu T, Matsuki N, Ikegaya Y, Koyama R (2018) Ischemic brain injury leads to brain edema via hyperthermia-induced TRPV4 activation. J Neurosci 38:5700–5709

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hunt RF, Hortopan GA, Gillespie A, Baraban SC (2012) A novel zebrafish model of hyperthermia-induced seizures reveals a role for TRPV4 channels and NMDA-type glutamate receptors. Exp Neurol 237:199–206

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jang Y, Jung J, Kim H, Oh J, Jeon JH, Jung S, Kim KT, Cho H, Yang DJ, Kim SM, Kim IB, Song MR, Oh U (2012) Axonal neuropathy-associated TRPV4 regulates neurotrophic factor-derived axonal growth. J Biol Chem 287:6014–6024

    CAS  PubMed  Google Scholar 

  • Jie P, Hong Z, Tian Y, Li Y, Lin L, Zhou L, Du Y, Chen L, Chen L (2015a) Activation of transient receptor potential vanilloid 4 induces apoptosis in hippocampus through downregulating PI3K/Akt and upregulating p38 MAPK signaling pathways. Cell Death Dis 6:e1775

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jie P, Tian Y, Hong Z, Li L, Zhou L, Chen L, Chen L (2015b) Blockage of transient receptor potential vanilloid 4 inhibits brain edema in middle cerebral artery occlusion mice. Front Cell Neurosci 9:141

    PubMed  PubMed Central  Google Scholar 

  • Jie P, Lu Z, Hong Z, Li L, Zhou L, Li Y, Zhou R, Zhou Y, Du Y, Chen L, Chen L (2016) Activation of transient receptor potential vanilloid 4 is involved in neuronal injury in middle cerebral artery occlusion in mice. Mol Neurobiol 53:8–17

    CAS  PubMed  Google Scholar 

  • Jo AO, Ryskamp DA, Phuong TT, Verkman AS, Yarishkin O, MacAulay N, Krizaj D (2015) TRPV4 and AQP4 channels synergistically regulate cell volume and calcium homeostasis in retinal Muller glia. J Neurosci 35:13525–13537

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kakumanu R, Kuruppu S, Rash LD, Isbister GK, Hodgson WC, and Kemp-Harper BK. 2019. D. russelii venom mediates vasodilatation of resistance like arteries via activation of Kv and KCa channels, Toxins (Basel), 11

  • Kauer JA, Gibson HE (2009) Hot flash: TRPV channels in the brain. Trends Neurosci 32:215–224

    CAS  PubMed  Google Scholar 

  • Kaye AD, Cornett EM, Hart B, Patil S, Pham A, Spalitta M, Mancuso KF (2018) Novel pharmacological nonopioid therapies in chronic pain. Curr Pain Headache Rep 22:31

    PubMed  Google Scholar 

  • Kim SJ, Kim YS, Yuan JP, Petralia RS, Worley PF, Linden DJ (2003) Activation of the TRPC1 cation channel by metabotropic glutamate receptor mGluR1. Nature 426:285–291

    CAS  PubMed  Google Scholar 

  • Konig N, Poluch S, Estabel J, Durand M, Drian MJ, Exbrayat JM (2001) Synaptic and non-synaptic AMPA receptors permeable to calcium. Jpn J Pharmacol 86:1–17

    CAS  PubMed  Google Scholar 

  • Konno M, Shirakawa H, Iida S, Sakimoto S, Matsutani I, Miyake T, Kageyama K, Nakagawa T, Shibasaki K, Kaneko S (2012) Stimulation of transient receptor potential vanilloid 4 channel suppresses abnormal activation of microglia induced by lipopolysaccharide. Glia 60:761–770

    PubMed  Google Scholar 

  • Krajnak K, Dahl R (2018) A new target for Alzheimer’s disease: a small molecule SERCA activator is neuroprotective in vitro and improves memory and cognition in APP/PS1 mice. Bioorg Med Chem Lett 28:1591–1594

    CAS  PubMed  Google Scholar 

  • Lafrenaye AD, and Simard JM. 2019. Bursting at the seams: molecular mechanisms mediating astrocyte swelling, Int J Mol Sci, 20

  • Lee JC, Choe SY (2014) Age-related changes in the distribution of transient receptor potential vanilloid 4 channel (TRPV4) in the central nervous system of rats. J Mol Histol 45:497–505

    CAS  PubMed  Google Scholar 

  • Li L, Qu W, Zhou L, Lu Z, Jie P, Chen L, Chen L (2013a) Activation of transient receptor potential vanilloid 4 increases NMDA-activated current in hippocampal pyramidal neurons. Front Cell Neurosci 7:17

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Yin J, Jie PH, Lu ZH, Zhou LB, Chen L, Chen L (2013b) Transient receptor potential vanilloid 4 mediates hypotonicity-induced enhancement of synaptic transmission in hippocampal slices. CNS Neurosci Ther 19:854–862

    CAS  PubMed  PubMed Central  Google Scholar 

  • Longden TA, Dabertrand F, Koide M, Gonzales AL, Tykocki NR, Brayden JE, Hill-Eubanks D, Nelson MT (2017) Capillary K(+)-sensing initiates retrograde hyperpolarization to increase local cerebral blood flow. Nat Neurosci 20:717–726

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu KT, Huang TC, Tsai YH, Yang YL (2017) Transient receptor potential vanilloid type 4 channels mediate Na-K-Cl-co-transporter-induced brain edema after traumatic brain injury. J Neurochem 140:718–727

    CAS  PubMed  Google Scholar 

  • Maciejak P, Taracha E, Lehner M, Szyndler J, Bidzinski A, Skorzewska A, Wislowska A, Zienowicz M, Plaznik A (2003) Hippocampal mGluR1 and consolidation of contextual fear conditioning. Brain Res Bull 62:39–45

    CAS  PubMed  Google Scholar 

  • Marrelli SP, O'Neil RG, Brown RC, Bryan RM Jr (2007) PLA2 and TRPV4 channels regulate endothelial calcium in cerebral arteries. Am J Physiol Heart Circ Physiol 292:H1390–H1397

    CAS  PubMed  Google Scholar 

  • McCarty NA, O'Neil RG (1992) Calcium signaling in cell volume regulation. Physiol Rev 72:1037–1061

    CAS  PubMed  Google Scholar 

  • Mizuno A, Matsumoto N, Imai M, Suzuki M (2003) Impaired osmotic sensation in mice lacking TRPV4. Am J Phys Cell Phys 285:C96–C101

  • Mola MG, Sparaneo A, Gargano CD, Spray DC, Svelto M, Frigeri A, Scemes E, Nicchia GP (2016) The speed of swelling kinetics modulates cell volume regulation and calcium signaling in astrocytes: a different point of view on the role of aquaporins. Glia 64:139–154

    PubMed  Google Scholar 

  • Morales-Mulia S, Vaca L, Hernandez-Cruz A, Pasantes-Morales H (1998) Osmotic swelling-induced changes in cytosolic calcium do not affect regulatory volume decrease in rat cultured suspended cerebellar astrocytes. J Neurochem 71:2330–2338

    CAS  PubMed  Google Scholar 

  • Mori F, Fukaya M, Abe H, Wakabayashi K, Watanabe M (2000) Developmental changes in expression of the three ryanodine receptor mRNAs in the mouse brain. Neurosci Lett 285:57–60

    CAS  PubMed  Google Scholar 

  • Nelson MT, Cheng H, Rubart M, Santana LF, Bonev AD, Knot HJ, Lederer WJ (1995) Relaxation of arterial smooth muscle by calcium sparks. Science 270:633–637

    CAS  PubMed  Google Scholar 

  • Nielsen S, Nagelhus EA, Amiry-Moghaddam M, Bourque C, Agre P, Ottersen OP (1997) Specialized membrane domains for water transport in glial cells: high-resolution immunogold cytochemistry of aquaporin-4 in rat brain. J Neurosci 17:171–180

    CAS  PubMed  PubMed Central  Google Scholar 

  • O'Connor ER, Kimelberg HK (1993) Role of calcium in astrocyte volume regulation and in the release of ions and amino acids. J Neurosci 13:2638–2650

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oguro A, Inoue T, Kudoh SN, Imaoka S (2018) 14,15-epoxyeicosatrienoic acid produced by cytochrome P450s enhances neurite outgrowth of PC12 and rat hippocampal neuronal cells. Pharmacol Res Perspect 6:e00428

    PubMed  PubMed Central  Google Scholar 

  • Okada Y, Maeno E, Shimizu T, Dezaki K, Wang J, Morishima S (2001) Receptor-mediated control of regulatory volume decrease (RVD) and apoptotic volume decrease (AVD). J Physiol 532:3–16

    CAS  PubMed  PubMed Central  Google Scholar 

  • Papathanou M, Creed M, Dorst MC, Bimpisidis Z, Dumas S, Pettersson H, Bellone C, Silberberg G, Luscher C, Wallen-Mackenzie A (2018) Targeting VGLUT2 in mature dopamine neurons decreases mesoaccumbal glutamatergic transmission and identifies a role for glutamate co-release in synaptic plasticity by increasing baseline AMPA/NMDA ratio. Front Neural Circuits 12:64

    CAS  PubMed  PubMed Central  Google Scholar 

  • Papouin T, Ladepeche L, Ruel J, Sacchi S, Labasque M, Hanini M, Groc L, Pollegioni L, Mothet JP, Oliet SH (2012) Synaptic and extrasynaptic NMDA receptors are gated by different endogenous coagonists. Cell 150:633–646

    CAS  PubMed  Google Scholar 

  • Pasantes-Morales H (2016) Channels and volume changes in the life and death of the cell. Mol Pharmacol 90:358–370

    CAS  PubMed  Google Scholar 

  • Petersson ME, Yoshida M, Fransen EA (2011) Low-frequency summation of synaptically activated transient receptor potential channel-mediated depolarizations. Eur J Neurosci 34:578–593

    PubMed  PubMed Central  Google Scholar 

  • Pivonkova H, Hermanova Z, Kirdajova D, Awadova T, Malinsky J, Valihrach L, Zucha D, Kubista M, Galisova A, Jirak D, Anderova M (2018) The contribution of TRPV4 channels to astrocyte volume regulation and brain edema formation. Neuroscience 394:127–143

    CAS  PubMed  Google Scholar 

  • Qi M, Wu C, Wang Z, Zhou L, Men C, Du Y, Huang S, Chen L, Chen L (2018) Transient receptor potential vanilloid 4 activation-induced increase in glycine-activated current in mouse hippocampal pyramidal neurons. Cell Physiol Biochem 45:1084–1096

    CAS  PubMed  Google Scholar 

  • Rama Rao KV, Chen M, Simard JM, Norenberg MD (2003) Increased aquaporin-4 expression in ammonia-treated cultured astrocytes. Neuroreport 14:2379–2382

    CAS  PubMed  Google Scholar 

  • Reddish FN, Miller CL, Gorkhali R, and Yang JJ. 2017a. Calcium dynamics mediated by the endoplasmic/sarcoplasmic reticulum and related diseases, Int J Mol Sci, 18

  • Reddish FN, Miller CL, Gorkhali R, and Yang JJ. 2017b. Monitoring ER/SR calcium release with the targeted Ca2+ sensor CatchER, J Vis Exp.

  • Ryskamp DA, Iuso A, Krizaj D (2015) TRPV4 links inflammatory signaling and neuroglial swelling. Channels (Austin) 9:70–72

    Google Scholar 

  • Salman MM, Kitchen P, Woodroofe MN, Brown JE, Bill RM, Conner AC, Conner MT (2017) Hypothermia increases aquaporin 4 (AQP4) plasma membrane abundance in human primary cortical astrocytes via a calcium/transient receptor potential vanilloid 4 (TRPV4)- and calmodulin-mediated mechanism. Eur J Neurosci 46:2542–2547

    PubMed  PubMed Central  Google Scholar 

  • Santulli G, Nakashima R, Yuan Q, Marks AR (2017) Intracellular calcium release channels: an update. J Physiol 595:3041–3051

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharp AH, McPherson PS, Dawson TM, Aoki C, Campbell KP, Snyder SH (1993) Differential immunohistochemical localization of inositol 1,4,5-trisphosphate- and ryanodine-sensitive Ca2+ release channels in rat brain. J Neurosci 13:3051–3063

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shavit-Stein E, Artan-Furman A, Feingold E, Ben Shimon M, Itzekson-Hayosh Z, Chapman J, Vlachos A, Maggio N (2017) Protease activated receptor 2 (PAR2) induces long-term depression in the hippocampus through transient receptor potential vanilloid 4 (TRPV4). Front Mol Neurosci 10:42

    PubMed  PubMed Central  Google Scholar 

  • Shen J, Tu L, Chen D, Tan T, Wang Y, Wang S (2019) TRPV4 channels stimulate Ca(2+)-induced Ca(2+) release in mouse neurons and trigger endoplasmic reticulum stress after intracerebral hemorrhage. Brain Res Bull 146:143–152

    CAS  PubMed  Google Scholar 

  • Shi M, Du F, Liu Y, Li L, Cai J, Zhang GF, Xu XF, Lin T, Cheng HR, Liu XD, Xiong LZ, Zhao G (2013) Glial cell-expressed mechanosensitive channel TRPV4 mediates infrasound-induced neuronal impairment. Acta Neuropathol 126:725–739

    CAS  PubMed  Google Scholar 

  • Shi Q, Li JL, Ma Y, Gao LP, Xiao K, Wang J, Zhou W, Chen C, Guo YJ, Dong XP (2018) Decrease of RyR2 in the prion infected cell line and in the brains of the scrapie infected mice models and the patients of human prion diseases. Prion 12:175–184

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shibasaki K, Suzuki M, Mizuno A, Tominaga M (2007) Effects of body temperature on neural activity in the hippocampus: regulation of resting membrane potentials by transient receptor potential vanilloid 4. J Neurosci 27:1566–1575

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shibasaki K, Ikenaka K, Tamalu F, Tominaga M, Ishizaki Y (2014) A novel subtype of astrocytes expressing TRPV4 (transient receptor potential vanilloid 4) regulates neuronal excitability via release of gliotransmitters. J Biol Chem 289:14470–14480

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shilling D, Muller M, Takano H, Mak DO, Abel T, Coulter DA, Foskett JK (2014) Suppression of InsP3 receptor-mediated Ca2+ signaling alleviates mutant presenilin-linked familial Alzheimer’s disease pathogenesis. J Neurosci 34:6910–6923

    CAS  PubMed  PubMed Central  Google Scholar 

  • Szarka, N., M. R. Pabbidi, K. Amrein, E. Czeiter, G. Berta, K. Pohoczky, Z. Helyes, Z. Ungvari, A. Koller, A. Buki, and P. Toth. 2018. Traumatic brain injury impairs myogenic constriction of cerebral arteries: role of mitochondria-derived H2O2 and TRPV4-dependent activation of BKca channels, J Neurotrauma

  • Tozzi A, Sclip A, Tantucci M, de Iure A, Ghiglieri V, Costa C, Di Filippo M, Borsello T, Calabresi P (2015) Region- and age-dependent reductions of hippocampal long-term potentiation and NMDA to AMPA ratio in a genetic model of Alzheimer’s disease. Neurobiol Aging 36:123–133

    CAS  PubMed  Google Scholar 

  • Vandecaetsbeek I, Vangheluwe P, Raeymaekers L, Wuytack F, and Vanoevelen J. 2011. The Ca2+ pumps of the endoplasmic reticulum and Golgi apparatus, Cold Spring Harb Perspect Biol, 3

  • Venero JL, Vizuete ML, Machado A, Cano J (2001) Aquaporins in the central nervous system. Prog Neurobiol 63:321–336

    CAS  PubMed  Google Scholar 

  • Vriens J, Watanabe H, Janssens A, Droogmans G, Voets T, Nilius B (2004) Cell swelling, heat, and chemical agonists use distinct pathways for the activation of the cation channel TRPV4. Proc Natl Acad Sci U S A 101:396–401

    CAS  PubMed  Google Scholar 

  • Wang YF, Parpura V (2018) Astroglial modulation of hydromineral balance and cerebral edema. Front Mol Neurosci 11:204

    PubMed  PubMed Central  Google Scholar 

  • Wang Z, Zhou L, An D, Xu W, Wu C, Sha S, Li Y, Zhu Y, Chen A, Du Y, Chen L, Chen L (2019) TRPV4-induced inflammatory response is involved in neuronal death in pilocarpine model of temporal lobe epilepsy in mice. Cell Death Dis 10:386

    PubMed  PubMed Central  Google Scholar 

  • Wissenbach U, Bodding M, Freichel M, Flockerzi V (2000) Trp12, a novel Trp related protein from kidney. FEBS Lett 485:127–134

    CAS  PubMed  Google Scholar 

  • Wollmuth LP, Kuner T, Sakmann B (1998) Adjacent asparagines in the NR2-subunit of the NMDA receptor channel control the voltage-dependent block by extracellular Mg2+. J Physiol 506(Pt 1):13–32

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu H, Zhao H, Tian W, Yoshida K, Roullet JB, Cohen DM (2003) Regulation of a transient receptor potential (TRP) channel by tyrosine phosphorylation. SRC family kinase-dependent tyrosine phosphorylation of TRPV4 on TYR-253 mediates its response to hypotonic stress. J Biol Chem 278:11520–11527

    CAS  PubMed  Google Scholar 

  • Xu M, Xiao M, Li S, Yang B (2017) Aquaporins in nervous system. Adv Exp Med Biol 969:81–103

    CAS  PubMed  Google Scholar 

  • Yasui M (2019) Aquaporin4 (AQP4) in brain disorder. Nihon Yakurigaku Zasshi 153:231–234

    PubMed  Google Scholar 

  • Zhang L, Papadopoulos P, Hamel E (2013) Endothelial TRPV4 channels mediate dilation of cerebral arteries: impairment and recovery in cerebrovascular pathologies related to Alzheimer’s disease. Br J Pharmacol 170:661–670

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang N, Yang S, Wang C, Zhang J, Huo L, Cheng Y, Wang C, Jia Z, Ren L, Kang L, Zhang W (2017) Multiple target of hAmylin on rat primary hippocampal neurons. Neuropharmacology 113:241–251

    CAS  PubMed  Google Scholar 

  • Zheng J, Chen J, Zou X, Zhao F, Guo M, Wang H, Zhang T, Zhang C, Feng W, Pessah IN, Cao Z (2019) Saikosaponin d causes apoptotic death of cultured neocortical neurons by increasing membrane permeability and elevating intracellular Ca(2+) concentration. Neurotoxicology 70:112–121

    CAS  PubMed  Google Scholar 

  • Zhu YH, Pei ZM (2018) GSK2193874 treatment at heatstroke onset reduced cell apoptosis in heatstroke mice. Cell Mol Biol (Noisy-le-grand) 64:36–42

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhua Zhao.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Na Liu and Jilin Wu are co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, N., Wu, J., Chen, Y. et al. Channels that Cooperate with TRPV4 in the Brain. J Mol Neurosci 70, 1812–1820 (2020). https://doi.org/10.1007/s12031-020-01574-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-020-01574-z

Keywords

Navigation