Skip to main content
Log in

The preparation and study of multilayer structured SiO2–TiO2 film: the effects of photonic crystals on enhanced photocatalytic properties

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Herein, SiO2-photonic crystal/TiO2 composite film (STF) with multilayer structure was designed and fabricated via self-assembly method and spin coating method. The micro-morphology and optical properties of the STF were characterized by scanning electron microscope (SEM) and UV/Vis/NIR spectrophotometer respectively. The photocatalytic activity of the STF was tested via the degradation rate of rhodamine B. The characterization results indicate that the STF has a regular ordered structure when the amount of ammonia is 3 mL and the concentration of SiO2 suspension is 1%, and SiO2 can be effectively combined with TiO2, so the STF has the best photocatalytic performance. The double-layer SiO2-photonic crystal/TiO2 composite film (DSTF) was further prepared and compared with the single-layer SiO2-photonic crystal/TiO2 composite film (SSTF). The photocatalytic properties of the DSTF are better than that of the SSTF. Finally, the mechanism of STF with enhanced photocatalytic performance is discussed, indicating that photonic crystal can effectively enhance the utilization of light which are near the wavelength of the center band gap, and then improve the photocatalytic performance of the photocatalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Al-Arjan WS, Algaradah MMF, Brewer J, Hector AL (2016) Mater Res Bull 74:234. https://doi.org/10.1016/j.materresbull.2015.10.038

    Article  CAS  Google Scholar 

  2. Li S-Y, Wang J, Wang G, Wang J-Z, Wang C-W (2015) Mater Res Bull 68:42. https://doi.org/10.1016/j.materresbull.2015.03.037

    Article  CAS  Google Scholar 

  3. Ma J, Du Q, Ge H, Zhang Q (2019) J Mater Sci 54:2928. https://doi.org/10.1007/s10853-018-3054-1

    Article  CAS  Google Scholar 

  4. Xie C, Yang S, Shi J, Li B, Gao C, Niu C (2017) Chem Eng J 327:1. https://doi.org/10.1016/j.cej.2017.06.079

    Article  CAS  Google Scholar 

  5. Dong C, Ji J, Yang Z, Xiao Y, Xing M, Zhang J (2019) Chin Chem Lett 30:853. https://doi.org/10.1016/j.cclet.2019.03.020

    Article  CAS  Google Scholar 

  6. Liu GJ, Zhou L, Fan QG, Chai LQ, Shao JZ (2016) J Mater Sci 51:2859. https://doi.org/10.1007/s10853-015-9594-8

    Article  CAS  Google Scholar 

  7. Zhou J, Jiang Y, Wu G et al (2017) Compos A Appl Sci Manuf 97:76. https://doi.org/10.1016/j.compositesa.2017.03.005

    Article  CAS  Google Scholar 

  8. Deng T-S, Zhang J-Y, Zhu K-T, Zhang Q-F, Wu J-L (2011) Mater Chem Phys 129:540. https://doi.org/10.1016/j.matchemphys.2011.04.064

    Article  CAS  Google Scholar 

  9. Li C, Paineau E, Brisset F, Franger S, Cobeau-Justin C, Ghazzal MN (2019) Catal Today 335:409. https://doi.org/10.1016/j.cattod.2019.01.030

    Article  CAS  Google Scholar 

  10. Matsushita S, Matsutani A, Morii Y et al (2016) J Mater Sci 51:1066. https://doi.org/10.1007/s10853-015-9436-8

    Article  CAS  Google Scholar 

  11. Watanabe H, Lu L (2018) Phys Rev Lett. https://doi.org/10.1103/PhysRevLett.121.263903

    Article  Google Scholar 

  12. Upadhyay M, Awasthi SK, Shiveshwari L, Shukla SN, Ojha SP (2016) Indian J Phys 90:353. https://doi.org/10.1007/s12648-015-0760-2

    Article  CAS  Google Scholar 

  13. Lopez-Torres D, Elosua C, Villatoro J et al (2017) Sensors Actuators B-Chem 242:1065. https://doi.org/10.1016/j.snb.2016.09.144

    Article  CAS  Google Scholar 

  14. Gamra D, Nachi K, AbdelMalek F, Bouchriha H (2012) Mater Lett 66:89. https://doi.org/10.1016/j.matlet.2011.03.080

    Article  CAS  Google Scholar 

  15. Zhang R, Zeng F, Pang F, Ge J (2018) ACS Appl Mater Interfaces 10:42241. https://doi.org/10.1021/acsami.8b14437

    Article  CAS  Google Scholar 

  16. Ge F, Yang X (2018) J Mater Sci 53:4840. https://doi.org/10.1007/s10853-017-1607-3

    Article  CAS  Google Scholar 

  17. Wu Y, Li M, Yuan J et al (2018) Mater Res Bull 100:353. https://doi.org/10.1016/j.materresbull.2017.12.048

    Article  CAS  Google Scholar 

  18. Dong H-W, Wang Y-S, Zhang C (2017) Ultrasonics 76:109. https://doi.org/10.1016/j.ultras.2016.12.018

    Article  Google Scholar 

  19. Diao YY, Liu XY, Toh GW, Shi L, Zi J (2013) Adv Funct Mater 23:5373

    Article  CAS  Google Scholar 

  20. Zhang JK, Liu RH, Zhao DP et al (2019) Opt Mater Express 9:195. https://doi.org/10.1364/ome.9.000195

    Article  CAS  Google Scholar 

  21. Hu X-L, Wen R-L, Qi Z-Y, Wang H (2018) Mater Sci Semicond Process 79:61. https://doi.org/10.1016/j.mssp.2018.01.024

    Article  CAS  Google Scholar 

  22. Ondic L, Varga M, Hruska K, Fait J, Kapusta P (2017) ACS Nano 11:2972. https://doi.org/10.1021/acsnano.6b08412

    Article  CAS  Google Scholar 

  23. Ryan CC, Delezuk JAM, Pavinatto A et al (2016) J Mater Sci 51:5388. https://doi.org/10.1007/s10853-016-9841-7

    Article  CAS  Google Scholar 

  24. Liu F, Gao Z, Hu J, Meng Y, Zhang S, Tang B (2019) J Mater Sci 54:10609. https://doi.org/10.1007/s10853-019-03657-8

    Article  CAS  Google Scholar 

  25. Curti M, Mendive CB, Grela MA, Bahnemann DW (2017) Mater Res Bull 91:155. https://doi.org/10.1016/j.materresbull.2017.03.061

    Article  CAS  Google Scholar 

  26. Qi D, Lu L, Xi Z, Wang L, Zhang J (2014) Appl Catal B 160–161:621. https://doi.org/10.1016/j.apcatb.2014.06.020

    Article  CAS  Google Scholar 

  27. Yu J, Lei J, Wang L, Zhang J, Liu Y (2018) J Alloy Compd 769:740. https://doi.org/10.1016/j.jallcom.2018.07.357

    Article  CAS  Google Scholar 

  28. Toumazatou A, Arfanis MK, Pantazopoulos P-A et al (2017) Mater Lett 197:123. https://doi.org/10.1016/j.matlet.2017.03.128

    Article  CAS  Google Scholar 

  29. Lu Y, Xu Y, Wu Q et al (2018) Colloids Surf A 539:291. https://doi.org/10.1016/j.colsurfa.2017.12.041

    Article  CAS  Google Scholar 

  30. Wang F, Feng L, Qin Y, Zhao T, Luo H, Zhu J (2019) J Mater Chem C 7:11972. https://doi.org/10.1039/c9tc03426a

    Article  CAS  Google Scholar 

  31. Chen S-L, Wang A-J, Dai C, Benziger JB, Liu X-C (2014) Chem Eng J 249:48. https://doi.org/10.1016/j.cej.2014.03.075

    Article  CAS  Google Scholar 

  32. Wang Y, Li P, Chen S-L, Wang A-J (2018) Catal Surv Asia 23:23. https://doi.org/10.1007/s10563-018-9259-0

    Article  CAS  Google Scholar 

  33. Stöber W, Fink A, Bohn E (1968) J Colloid Interface Sci 26:62. https://doi.org/10.1016/0021-9797(68)90272-5

    Article  Google Scholar 

  34. Zhang L, Xing Z, Zhang H et al (2016) Appl Catal B 180:521. https://doi.org/10.1016/j.apcatb.2015.07.002

    Article  CAS  Google Scholar 

  35. Bogush GH, Tracy MA, Zukoski CF (1988) J Non-Cryst Solids 104:95. https://doi.org/10.1016/0022-3093(88)90187-1

    Article  CAS  Google Scholar 

  36. Green DL, Lin JS, Lam Y-F, Hu MZC, Schaefer DW, Harris MT (2003) J Colloid Interface Sci 266:346. https://doi.org/10.1016/S0021-9797(03)00610-6

    Article  CAS  Google Scholar 

  37. Lee K, Sathyagal AN, McCormick AV (1998) Colloids Surf A 144:115. https://doi.org/10.1016/S0927-7757(98)00566-4

    Article  CAS  Google Scholar 

  38. LaMer VK, Dinegar RH (1950) J Am Chem Soc 72:4847. https://doi.org/10.1021/ja01167a001

    Article  CAS  Google Scholar 

  39. Colodrero S, Mihi A, Anta JA, Ocaña M, Míguez H (2009) J Phys Chem C 113:1150. https://doi.org/10.1021/jp809789s

    Article  CAS  Google Scholar 

  40. Lozano G, Colodrero S, Caulier O, Calvo ME, Míguez H (2010) J Phys Chem C 114:3681. https://doi.org/10.1021/jp9096315

    Article  CAS  Google Scholar 

  41. Li P, Chen S-L, Wang A-J, Wang Y (2016) Chem Eng J 284:305. https://doi.org/10.1016/j.cej.2015.08.094

    Article  CAS  Google Scholar 

  42. Low J, Zhang L, Zhu B, Liu Z, Yu J (2018) ACS Sustain Chem Eng 6:15653. https://doi.org/10.1021/acssuschemeng.8b04150

    Article  CAS  Google Scholar 

  43. Jin J, Hines WA, Kuo CH et al (2015) Dalton Trans 44:11943. https://doi.org/10.1039/c5dt01388g

    Article  CAS  Google Scholar 

  44. Li P, Wang Y, Chen SL, Wang AJ (2016) J Mater Sci 51:2079. https://doi.org/10.1007/s10853-015-9518-7

    Article  CAS  Google Scholar 

  45. Yuan LF, Yu Z, Li CH et al (2014) J Electrochem Soc 161:H332. https://doi.org/10.1149/2.069405jes

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Shaanxi Province (Grant No. 2018GY-106) and the National Natural Science Foundation of China (Grant Nos. 51302161, 51702194).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanting Wu.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Liu, T., Yuan, J. et al. The preparation and study of multilayer structured SiO2–TiO2 film: the effects of photonic crystals on enhanced photocatalytic properties. J Mater Sci 55, 11095–11105 (2020). https://doi.org/10.1007/s10853-020-04836-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04836-8

Navigation