Skip to main content

Advertisement

Log in

Performance of an Al–0.08Sn–0.08Ga–xMg alloy as an anode for Al–air batteries in alkaline electrolytes

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Aluminum (Al) electrodes doped with metals, such as Sn, Ga, and Mg, were prepared by smelting to study the effects of Mg content on the properties of Al electrodes. After testing the corrosion resistance and electrochemical properties (in 4 M NaOH solution) of the Al–0.08Sn–0.08Ga–xMg alloy, the results were compared to virgin Al and an Al–Sn–Ga alloy. The battery performance was studied by constant current discharge. Scanning electron microscope and energy-dispersive X-ray analysis were used to investigate the corrosion form and discharge surface of the alloys. Results showed that the Mg–Sn and Mg–Ga phases act as corrosion centers enabling negative corrosion potential. Electrochemical test results revealed that compared with the pure Al and Al–Sn–Ga alloy, the Al–0.08Sn–0.08Ga–0.5Mg alloy not only showed a more negative potential but also showed enhanced activity. Moreover, it showed high energy density (3169.7 Wh kg−1) and improved anode efficiency (86.9 ± 0.2%) when used as an anode for an aluminum–air battery in NaOH solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Mokhtar M, Talib MZM, Majlan EH et al (2015) Recent developments in materials for aluminum-air batteries: a review. J Ind Eng Chem 32:1–20

    Article  CAS  Google Scholar 

  2. Zhan XM, Liu LH, Gao ZN (2011) Electrocatalytic oxidation of quinine sulfate at a multiwall carbon nanotubes-ionic liquid modified glassy carbon electrode and its electrochemical determination. J Solid State Electrochem 15:1185–1192

    Article  CAS  Google Scholar 

  3. Zhuk AZ, Sheindlin AE, Kleymenov BV et al (2006) Use of low-cost aluminum in electric energy production. J Power Sources 157:921–926

    Article  CAS  Google Scholar 

  4. Kim H, Jeong G, Kim YU et al (2013) Metallic anodes for next-generation secondary batteries. Chem Soc Rev 42:9011–9034

    Article  CAS  Google Scholar 

  5. Li Q, Bjerrum NJ (2002) Aluminum as anode for energy storage and conversion: a review. J Power Sources 110:1–10

    Article  CAS  Google Scholar 

  6. Yang S, Knickle H (2002) Design and analysis of aluminum/air battery system for electric vehicles. J Power Sources 112:162–173

    Article  CAS  Google Scholar 

  7. Kulandainathan MA, Mideen AS, Kapali V et al (1992) Studies on the best alkaline electrolyte for aluminum/air batteries. J Power Sources 39:263–269

    Article  Google Scholar 

  8. Amin MA, El-Rehim SA, El-Sherbini EF et al (2007) The inhibition of low carbon steel corrosion in hydrochloric acid solutions by succinic acid: part I. Weight loss, polarization, EIS, PZC, EDX and SEM studies. Electrochim Acta 52:3588–3600

    Article  CAS  Google Scholar 

  9. Thompson GE, Curioni M, Koroleva EV, et al (2010) Environmentally-friendly anodizing of aluminum alloys. In: Conference of the Australasian Corrosion Association 2010: corrosion and prevention, pp 10–22

  10. Gudić S, Radošević J, Smoljko I et al (2005) Cathodic breakdown of anodic oxide film on Al and Al–Sn alloys in NaCl solution. Electrochim Acta 50:5624–5632

    Article  Google Scholar 

  11. Amin MA, El-Rehim SA, El-Sherbini EF et al (2009) Pitting corrosion studies on Al and Al–Zn alloys in SCN solutions. Electrochim Acta 54:4288–4296

    Article  CAS  Google Scholar 

  12. Elango A, Periasamy VM, Paramasivam M (2009) Study on polyaniline-ZnO used as corrosion inhibitors of 57S aluminum in 2 M NaOH solution. Anti-Corros Methods Mater 56:266–270

    Article  CAS  Google Scholar 

  13. He J, Wen J, Li X (2011) Effects of precipitates on the electrochemical performance of Al sacrificial anode. Corros Sci 53:1948–1953

    Article  CAS  Google Scholar 

  14. Shayeb HAE, Wahab FMAE, Abedin SZE (1999) Role of indium ions on the activation of aluminum. J Appl Electrochem 29:601–609

    Article  Google Scholar 

  15. Doche ML, Novel-Cattin F, Durand R et al (1997) Characterization of different grades of aluminum anodes for aluminum/air batteries. J Power Sources 65:197–205

    Article  CAS  Google Scholar 

  16. Sim D, Liu D, Dong X et al (2011) Power factor enhancement for few-layered graphene films by molecular attachments. J Phys Chem C 115:1780–1785

    Article  CAS  Google Scholar 

  17. Abedin SZE, Saleh AO (2004) Characterization of some aluminum alloys for application as anodes in alkaline batteries. J Appl Electrochem 34:331–335

    Article  Google Scholar 

  18. Smoljko I (2012) Electrochemical properties of aluminum anodes for Al/air batteries with aqueous sodium chloride electrolyte. J Appl Electrochem 42:969–977

    Article  CAS  Google Scholar 

  19. Cabanillas B, Pedrosa M, Cuadrado C et al (2010) Effects of enzymatic hydrolysis on peanut allergenicity. J Allergy Clin Immunol 125:AB224–AB224

    Article  Google Scholar 

  20. Egan DR, León CPD, Wood RJK et al (2013) Developments in electrode materials and electrolytes for aluminum-air batteries. J Power Sources 236:293–310

    Article  CAS  Google Scholar 

  21. Wang ZL, Hao XF, Jiang Z et al (2015) C, and N hybrid coordination derived Co–C–N complex as a highly efficient electrocatalyst for hydrogen evolution reaction. J Am Chem Soc 137:15070–15073

    Article  CAS  Google Scholar 

  22. Huo K, Gao B, Fu J et al (2014) Fabrication, modification, and biomedical applications of anodized TiO2 nanotube arrays. RSC Adv 4:17300–17324

    Article  CAS  Google Scholar 

  23. Fan L, Lu H (2015) The effect of grain size on aluminum anodes for Al–air batteries in alkaline electrolytes. J Power Sources 284:409–415

    Article  CAS  Google Scholar 

  24. Srinivas M, Adapaka SK, Neelakantan L (2016) Solubility effects of Sn and Ga on the microstructure and corrosion behavior of Al–Mg–Sn–Ga alloy anodes. J Alloy Compd 683:647–653

    Article  CAS  Google Scholar 

  25. Fan L, Lu H, Leng J (2015) Performance of finely structured aluminum anodes in neutral and alkaline electrolytes for Al–air batteries. Electrochim Acta 165:22–28

    Article  CAS  Google Scholar 

  26. Sun Z, Lu H, Hong Q et al (2015) Evaluation of an alkaline electrolyte system for Al–air battery. ECS Electrochem Lett 4:A133–A136

    Article  CAS  Google Scholar 

  27. Wang J, Li X, Wang Z et al (2013) Enhancement of the electrochemical performance of Al-doped LiVPO4F using AlF3 as aluminum source. J Alloy Compd 581:836–842

    Article  CAS  Google Scholar 

  28. Huang Y, Dieringa H, Kainer KU et al (2014) Understanding effects of microstructural inhomogeneity on creep response—new approaches to improve the creep resistance in magnesium alloys. J Magnes Alloys 2:124–132

    Article  CAS  Google Scholar 

  29. Wang XM, Hu JM, Zhang JQ et al (2008) Characterization of surface fouling of Ti/IrO electrodes in 4-chlorophenol aqueous solutions by electrochemical impedance spectroscopy. Electrochim Acta 53:3386–3394

    Article  CAS  Google Scholar 

  30. Shao HB, Wang JM, Wang XY et al (2004) Anodic dissolution of aluminum in NAOH ethanol solutions. Electrochem Commun 6:6–9

    Article  CAS  Google Scholar 

  31. Jun-Guang HE, Wen JB, Xu-Dong LI et al (2011) Influence of Ga and Bi on electrochemical performance of Al–Zn–Sn sacrificial anodes. Trans Nonferr Met Soc China 21:1580–1586

    Article  Google Scholar 

  32. Sherif ESM, Ammar HR, Khalil KA (2014) Effects of copper and titanium on the corrosion behavior of newly fabricated nanocrystalline aluminum in natural seawater. Appl Surf Sci 301:142–148

    Article  CAS  Google Scholar 

  33. Osório WR, Spinelli JE, Ferreira IL et al (2007) The roles of macrosegregation and of dendritic array spacing on the electrochemical behavior of an Al–4.5 wt.% Cu alloy. Electrochim Acta 52:3265–3273

    Article  Google Scholar 

  34. Ma J, Wen J, Gao J et al (2014) Performance of Al–1Mg–1Zn–0.1Ga–0.1Sn as anode for Al-air battery. Electrochem Acta 129:69–75

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from the National Natural Science Foundation of People’s Republic of China (NSFC51761020 and NSFC51761021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Cao.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare. This research was supported by the National Natural Science Foundation of People’s Republic of China (NSFC51761020 and NSFC51761021). There are no other relationships or activities that could appear to have influenced the submitted work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, S., Tian, C., Alzoabi, S. et al. Performance of an Al–0.08Sn–0.08Ga–xMg alloy as an anode for Al–air batteries in alkaline electrolytes. J Mater Sci 55, 11477–11488 (2020). https://doi.org/10.1007/s10853-020-04711-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04711-6

Navigation