Skip to main content
Log in

Smooth Invariant Manifolds for Differential Equations with Infinite Delay

  • Published:
Journal of Dynamical and Control Systems Aims and scope Submit manuscript

Abstract

In this article, we give the existence of a smooth stable manifold which is invariant under the semiflows of the delay differential equation \( x^{\prime }= Ax(t) + Lx_t + f(t,x_t, \lambda ) \), with the assumption that the corresponding linear differential equation admits a nonuniform exponential dichotomy and the perturbation f(t, xt, λ) is small and smooth enough. We also show that the obtained manifold is Lipschitz in the parameter λ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bahuguna D, Singh L. 2019. Stable manifolds for impulsive delay equations and parameter dependence. Electronic Journal of Differential Equations.

  2. Barreira L, Fan M, Valls C, Zhang J. Stable manifolds for delay equations and parameter dependence. Nonlinear Anal: Theory Methods Appl 2012;75(15):5824–35.

    Article  MathSciNet  Google Scholar 

  3. Barreira L, Pesin Y, Vol. 115. Nonuniform hyperbolicity: dynamics of systems with nonzero Lyapunov exponents. Cambridge: Cambridge University Press; 2007.

    Book  Google Scholar 

  4. Barreira L, Valls C. Stable manifolds for nonautonomous equations without exponential dichotomy. J Diff Equ 2006;221(1):58–90.

    Article  MathSciNet  Google Scholar 

  5. Barreira L, Valls C. Stability of nonautonomous differential equations. Lecture notes in mathematics. Berlin: Springer; 2007.

    MATH  Google Scholar 

  6. Barreira L, Valls C. Parameter dependence of stable manifolds under nonuniform hyperbolicity. J Math Anal Appl 2009;358(2):419–26.

    Article  MathSciNet  Google Scholar 

  7. Barreira L, Valls C. Stable manifolds for impulsive equations under nonuniform hyperbolicity. J Dyn Diff Equat 2010;22(4):761–85.

    Article  MathSciNet  Google Scholar 

  8. Hadamard J. Sur l’itération et les solutions asymptotiques des équations différentielles. Bull Soc Math France 1901;29:224–228.

    MATH  Google Scholar 

  9. Hale JK, Verduyn Lunel SM. 2013. Introduction to functional differential equations, vol 99. Springer Science & Business Media.

  10. Hino Y, Murakami S, Naito T, Van Minh N. A variation-of-constants formula for abstract functional differential equations in the phase space. J Diff Equ 2002; 179(1):336–355.

    Article  MathSciNet  Google Scholar 

  11. Hirsch MW, Pugh CC. 1970. Stable manifolds and hyperbolic sets, Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), 133–163.

  12. Hirsch MW, Pugh CC, Shub M. 1977. Invariant manifolds volume 583 of lecture notes in mathematics.

  13. Liapounoff MA. Problème général de la stabilité du mouvement. Princeton: Princeton University Press; 1949.

    MATH  Google Scholar 

  14. Oseledets VI. A multiplicative ergodic theorem. Characteristic Ljapunov, Exponents of dynamical systems. Trudy Moskovskogo Matematicheskogo Obshchestva 1968;19: 179–210.

    MathSciNet  Google Scholar 

  15. Perron O. Die stabilitätsfrage bei differentialgleichungen. Mathematische Zeitschrift 32 1930;1:703–728.

    Article  Google Scholar 

  16. Pesin JB. Families of invariant manifolds corresponding to nonzero characteristic exponents. Mathematics of the USSR-Izvestiya 1976;10(6):1261.

    Article  Google Scholar 

  17. Pesin YB. Characteristic lyapunov exponents and smooth ergodic theory. Russ Math Surv 1977;32(4):55–114.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the referees for their valuable comments and suggestions for considerably improving the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lokesh Singh.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, L., Bahuguna, D. Smooth Invariant Manifolds for Differential Equations with Infinite Delay. J Dyn Control Syst 27, 107–132 (2021). https://doi.org/10.1007/s10883-020-09498-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10883-020-09498-y

Keywords

Mathematics Subject Classification (2010)

Navigation