Skip to main content

Advertisement

Log in

Investigation of the potential anticancer effects of napelline and talatisamine dirterpenes on experimental brain tumor models

  • Original Article
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Brain cancers are one of the most aggressive tumours in humans. Especially, gliomas are among the deadliest of human cancers and show high resistance to chemotherapeutic agents. On the other hand, discovery of biologically effective non-synthetic biomaterials in treatments of different diseases, especially cancer, has continued to be one of the most popular research topics today. Therefore, we aimed to investigate biochemical, cytological and molecular genetic effects of napelline and talatisamine diterpenes in human U-87 MG glioma cells by using total antioxidant status and total oxidative status, 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxphenyl)-2-(4-sulfophenyl)-2H-tetrozolium, inner salt and lactate dehydrogenase release assay and RT2 Prolifer PCR Arrays. Our results revealed that napelline and talatisamine exhibited cytotoxic effects at high doses. Napelline and talatisamine diterpenes increased apoptosis compared to control in U-87 MG cells. While napelline induced up-regulation of 50 and down-regulation of 13 genes, talatisamine induced up-regulation of 32 and down-regulation of 18 genes in U-87 MG cells. Napelline was shown to have a higher anticancer activity than talatisamine. We think that, napelline and talatisamine might be evaluated as potential chemotherapeutic agents for treatment of glioblastoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alizadeh F, Bolhassani A, Khavari A, Bathaie SZ, Naji T, Bidgoli SA (2014) Retinoids and their biological effects against cancer. Int Immunopharmacol 18:43–49

    CAS  PubMed  Google Scholar 

  • Anassi E, Ndefo UA (2011) Sipuleucel-T (provenge) injection: the first immunotherapy agent (vaccine) for hormone-refractory prostate cancer. P T 36:197–202

    PubMed  PubMed Central  Google Scholar 

  • Antonoff MB, Chugh R, Borja-Cacho D, Dudeja V, Clawson KA, Skube SJ et al (2009) Triptolide therapy for neuroblastoma decreases cell viability in vitro and inhibits tumor growth in vivo. Surgery 146:282–290

    PubMed  Google Scholar 

  • Aydin E, Türkez H, Taşdemir S (2013) Anticancer and antioxidant properties of terpinolene in rat brain cells. Arh Hig Rada Toksikol 64:415–424

    CAS  PubMed  Google Scholar 

  • Aydın E, Türkez H, Keleş MS (2014) The effect of carvacrol on healthy neurons and N2a cancer cells: some biochemical, anticancerogenicity and genotoxicity studies. Cytotechnology 66:149–157

    PubMed  Google Scholar 

  • Aydın E, Türkez H, Keleş MS (2015) Potential anticancer activity of carvone in N2a neuroblastoma cell line. Toxicol Ind Health 31:764–772

    PubMed  Google Scholar 

  • Bakkali F, Averbeck S, Averbeck D, Idaomar M (2008) Biological effects of essential oils–a review. Food Chem Toxicol 46:446–475

    CAS  PubMed  Google Scholar 

  • Berridge MV, Tan AS (1993) Characterization of the cellular reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT): subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction. Arch Biochem Biophys 303:474–482

    CAS  PubMed  Google Scholar 

  • Chan EW, Cheng SC, Sin FW, Xie Y (2001) Triptolide induced cytotoxic effects on human promyelocytic leukemia, T cell lymphoma and human hepatocellular carcinoma cell lines. Toxicol Lett 122:81–87

    CAS  PubMed  Google Scholar 

  • Chen Y, Jungsuwadee P, Vore M, Butterfield DA, St Clair DK (2007) Collateral damage in cancer chemotherapy: oxidative stress in nontargeted tissues. Mol Interv 7:147–156

    CAS  PubMed  Google Scholar 

  • Cherney EC, Baran PS (2011) Terpenoid-alkaloids: their biosynthetic twist of fate and total synthesis. Isr J Chem 51:391–405

    CAS  PubMed  PubMed Central  Google Scholar 

  • Choi MJ, Park EJ, Oh JH, Min KJ, Yang ES, Kim YH et al (2011) Cafestol, a coffee-specific diterpene, induces apoptosis in renal carcinoma Caki cells through down-regulation of anti-apoptotic proteins and Akt phosphorylation. Chem Biol Interact 190:102–108

    CAS  PubMed  Google Scholar 

  • Conolly JD, Hill RA (1991) Dictionary of Terpenoids. Chapman and Hall, London

    Google Scholar 

  • Cowan MM (1999) Plant products as antimicrobial agents. Clin Microbiol Rev 12:564–582

    CAS  PubMed  PubMed Central  Google Scholar 

  • Czabotar P, Cowan A, Colman P (2017) Structures of bak with lipids: implications for pore formation. Acta Cryst A 73:C104

    Google Scholar 

  • de Oliveira PF, Munari CC, Nicolella HD, Veneziani RC, Tavares DC (2016) Manool, a salvia officinalis diterpene, induces selective cytotoxicity in cancer cells. Cytotechnology 68(5):2139–2143

    PubMed  Google Scholar 

  • Decker T, Lohmann-Matthes ML (1988) A quick and simple method for the quantitation of lactate dehydrogenase release in measurements of cellular cytotoxicity and tumor necrosis factor (TNF) activity. J Immunol Methods 115:61–69

    CAS  PubMed  Google Scholar 

  • Fotakis G, Timbrell JA (2006) In vitro cytotoxicity assays: comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicol Lett 160:171–177

    CAS  PubMed  Google Scholar 

  • Habtemariam S, Varghese GK (2015) A novel diterpene skeleton: identification of a highly aromatic, cytotoxic and antioxidant 5-methyl-10-demethyl-abietane-type diterpene from Premna serratifolia. Phytother Res 29:80–85

    CAS  PubMed  Google Scholar 

  • Halliwell B (2006) Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol 141:312–322

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hong JY, Nam JW, Seo EK, Lee SK (2010) Daphnane diterpene esters with anti-proliferative activities against human lung cancer cells from Daphne genkwa. Chem Pharm Bull 58:234–237

    CAS  PubMed  Google Scholar 

  • Hong JY, Boo HJ, Kang JI, Kim MK, Yoo ES, Hyun JW et al (2012) (1S,2S,3E,7E,11E)-3,7,11,15-Cembratetraen-17,2-olide, a cembrenolide diterpene from soft coral Lobophytum sp., inhibits growth and induces apoptosis in human colon cancer cells through reactive oxygen species generation. Biol Pharm Bull 35:1054–1063

    CAS  PubMed  Google Scholar 

  • Idbaih A, Duran-Peña A, Bonnet C, Ducray F (2015) Input of molecular analysis in medical management of primary brain tumor patients. Rev Neurol 171:457–465

    CAS  PubMed  Google Scholar 

  • Islam MT, da Mata AM, de Aguiar RP, Paz MF, de Alencar MV, Ferreira PM et al (2016) Therapeutic potential of essential oils focusing on diterpenes. Phytother Res 30:1420–1444

    PubMed  Google Scholar 

  • Jhanwar-Uniyal M, Labagnara M, Friedman M, Kwasnicki A, Murali R (2015) Glioblastoma: molecular pathways, stem cells and therapeutic targets. Cancers 7:538–555

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson JJ, Syed DN, Heren CR, Suh Y, Adhami VM, Mukhtar H (2008) Carnosol, a dietary diterpene, displays growth inhibitory effects in human prostate cancer PC3 cells leading to G2-phase cell cycle arrest and targets the 5′-AMP-activated protein kinase (AMPK) pathway. Pharm Res 25:2125–2134

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ke Z, Wang G, Yang L, Qiu H, Wu H, Du M et al (2017) Crude terpene glycoside component from Radix paeoniae rubra protects against isoproterenol-induced myocardial ischemic injury via activation of the PI3K/AKT/mTOR signaling pathway. J Ethnopharmacol 206:160–169

    CAS  PubMed  Google Scholar 

  • Kheirollahi M, Dashti S, Khalaj Z, Nazemroaia F, Mahzouni P (2015) Brain tumors: special characters for research and banking. Adv Biomed Res 4:4

    PubMed  PubMed Central  Google Scholar 

  • Kinghorn AD, Farnsworth NR, Soejarto DD, Cordell GA, Pezzuto JM, Udeani GO et al (1999) Novel strategies for the discovery of plant-derived anticancer agents. Pure Appl Chem 71:1611–1618

    CAS  Google Scholar 

  • Kiss T, Mácsai L, Csupor L, Datki ZL (2017) In vivo screening of diterpene alkaloids using bdelloid rotifer assays. Acta Biol Hung 68:443–452

    CAS  PubMed  Google Scholar 

  • Kondoh M, Suzuki I, Sato M, Nagashima F, Simizu S, Harada M, Fujii M, Osada H, Asakawa Y, Watanabe Y (2004) Kaurene diterpene induces apoptosis in human leukemia cells partly through a caspase-8-dependent pathway. J Pharmacol Exp Ther 311(1):115–122

    CAS  PubMed  Google Scholar 

  • Korzeniewski C, Callewaert DM (1983) An enzyme-release assay for natural cytotoxicity. J Immunol Methods 64:313–320

    CAS  PubMed  Google Scholar 

  • Lawrence MS, Stojanov P, Mermel CH, Robinson JT, Garraway LA, Golub TR et al (2014) Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 505:495–501

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee CH, Jung KW, Yoo H, Park S, Lee SH (2010) Epidemiology of primary brain and central nervous system tumors in Korea. J Korean Neurosurg Soc 48:145–152

    PubMed  PubMed Central  Google Scholar 

  • Lee-Hilz YY, Boerboom AM, Westphal AH, Berkel WJ, Aarts JM, Rietjens IM (2006) Pro-oxidant activity of flavonoids induces EpRE-mediated gene expression. Chem Res Toxicol 19:1499–1505

    CAS  PubMed  Google Scholar 

  • Markert J, DeVita VT, Rosenberg SA, Hellman S (2005) Glioblastoma Multiforme. USA: Jones and Bartlett Publishers 9

  • Mason WP, Maestro RD, Eisenstat D, Forsyth P, Fulton D, Laperrière N et al (2007) Canadian recommendations for the treatment of glioblastoma multiforme. Curr Oncol 14:110–117

    CAS  PubMed  PubMed Central  Google Scholar 

  • Patel MI, Tuckerman R, Dong Q (2005) A Pitfall of the 3-(4,5-dimethylthiazol-2-yl)-5(3-carboxymethonyphenol)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay due to evaporation in wells on the edge of a 96 well plate. Biotechnol Lett 27:805–808

    CAS  PubMed  Google Scholar 

  • Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2:751–760

    CAS  PubMed  Google Scholar 

  • Peng JP, Liu LT, Chang HC, Hung WC (2003) Enhancement of chemotherapeutic drug-induced apoptosis by a cyclooxygenase-2 inhibitor in hypopharyngeal carcinoma cells. Cancer Lett 201:157–163

    CAS  PubMed  Google Scholar 

  • Rahmani S, Wong LS (2014) Central nerve system malignant tumors. J Dental Med Sci 13:52–63

    Google Scholar 

  • Reddy PP, Rao RR, Rekha K, Suresh Babu K, Shashidhar J, Shashikiran G et al (2009) Two new cytotoxic diterpenes from the rhizomes of Hedychium spicatum. Bioorg Med Chem Lett 19:192–195

    CAS  PubMed  Google Scholar 

  • Renehan AG, Booth C, Potten CS (2001) What is apoptosis, and why is it important? Br Med J 322:1536–1538

    CAS  Google Scholar 

  • Sacchettini JC, Poulter CD (1997) Creating isoprenoid diversity. Science 277:1788–1789

    CAS  PubMed  Google Scholar 

  • Sashidhara KV, Rosaiah JN, Kumar A, Bid HK, Konwar R, Chattopadhyay N (2007) Cell growth inhibitory action of an unusual labdane diterpene, 13-epi-sclareol in breast and uterine cancers in vitro. Phytother Res 21:1105–1108

    CAS  PubMed  Google Scholar 

  • Simizu S, Takada M, Umezawa K, Imoto M (1998) Requirement of caspase-3(-like) protease-mediated hydrogen peroxide production for apoptosis induced by various anticancer drugs. J Biol Chem 273:26900–26907

    CAS  PubMed  Google Scholar 

  • Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996

    CAS  Google Scholar 

  • Togar B, Turkez H, Hacimuftuoglu A, Tatar A, Geyikoglu F (2015) Guaiazulene biochemical activity and cytotoxic and genotoxic effects on rat neuron and N2a neuroblastom cells. J Intercult Ethnopharmacol 4:29–33

    CAS  PubMed  PubMed Central  Google Scholar 

  • Turabekova MA, Rasulev BF, Levkovich MG, Abdullaev ND, Leszczynski J (2008) Aconitum and delphinium sp. alkaloids as antagonist modulators of voltage-gated Na + channels. AM1/DFT electronic structure investigations and QSAR studies. Comput Biol Chem 32:88–101

    CAS  PubMed  Google Scholar 

  • Turkez H, Togar B, Di Stefano A, Taspınar N, Sozio P (2015) Protective effects of cyclosativene on H2O 2-induced injury in cultured rat primary cerebral cortex cells. Cytotechnology 67:299–309

    CAS  PubMed  Google Scholar 

  • Vergara D, Simeone P, Bettini S, Tinelli A, Valli L, Storelli C et al (2014) Antitumor activity of the dietary diterpene carnosol against a panel of human cancer cell lines. Food Funct 5:1261–1269

    CAS  PubMed  Google Scholar 

  • Wang SS, Cheng YB, Lin YC, Liaw CC, Chang JY, Kuo YH et al (2015) Nitrogen-containing diterpenoids, sesquiterpenoids, and nor-diterpenoids from Cespitularia taeniata. Mar Drugs 13:5796–5814

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao F, He EQ, Wang L, Liu K (2008) Anti-tumor activities of andrographolide, a diterpene from Andrographis paniculata, by inducing apoptosis and inhibiting VEGF level. J Asian Nat Prod Res 10:467–473

    PubMed  Google Scholar 

Download references

Acknowledgments

This study was financed by Erzurum Technical University Scientific Research Project (Grand Number: 2017/20).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Merve Demirbağ Karaali.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demirbağ Karaali, M., Aydın Karataş, E. Investigation of the potential anticancer effects of napelline and talatisamine dirterpenes on experimental brain tumor models. Cytotechnology 72, 569–578 (2020). https://doi.org/10.1007/s10616-020-00405-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-020-00405-8

Keywords

Navigation