Skip to main content
Log in

A Novel Student’s t-based Kalman Filter with Colored Measurement Noise

  • Short Paper
  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, a novel robust Student’s t-based Kalman filter (RSTKF) is proposed to solve the problem of a linear system with heavy-tailed process and measurement noises (HPMN) and colored measurement noise (CMN). The above problem is transformed into the filtering problem of a linear system with HPMN and white measurement noise after using the measurement differencing method and state augmentation approach. The augmentation state vector, the scale matrix and the auxiliary random variables are jointly estimated based on the variational Bayesian approach. Simulation results are provided to demonstrate the superiority of the proposed RSTKF by comparing with the existing filtering algorithms for systems with HPMN and CMN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. C.M. Bishop, Pattern Recognition and Machine Learning (Springer, Berlin, 2007)

    MATH  Google Scholar 

  2. G.T. Cinar, J.C. Principe, Hidden state estimation using the Correntropy Filter with fixed point update and adaptive kernel size. in IEEE World Congress on Computational Intelligence (Brisbane. Australia, 2012), pp. 1–6

  3. B. Chen, J.C. Principe, Maximum correntropy estimation is a smoothed MAP estimation. IEEE Signal Process. Lett. 19(8), 491–494 (2012)

    Article  Google Scholar 

  4. B. Chen, J. Wang, H. Zhao, N. Zheng, J.C. Principe, Convergence of a fixed-point algorithm under maximum correntropy criterion. IEEE Signal Process. Lett. 22(10), 1723–1727 (2015)

    Article  Google Scholar 

  5. G. Durgaprasad, S.S. Thakur, Robust dynamic state estimation of power systems based on M-estimation and realistic modeling of system dynamics. IEEE Trans. Power Syst. 13(4), 1331–1336 (1998)

    Article  Google Scholar 

  6. M.A. Gandhi, L. Mili, Robust Kalman filter based on a generalized maximum-likelihood-type estimator. IEEE Trans. Signal Process. 58(5), 2509–2520 (2010)

    Article  MathSciNet  Google Scholar 

  7. Y.L. Huang, Y.G. Zhang, Y. Zhao, L. Mihaylova, J. Chambers, Robust Rauch–Tung–Striebel smoothing framework for heavy-tailed and/or skew noises. EEE Trans. Aeros. Elect. Syst. (2019). https://doi.org/10.1109/TAES.2019.2914520

    Article  Google Scholar 

  8. Y.L. Huang, Y.G. Zhang, N. Li, J. Chambers, Robust Student’s t based nonlinear filter and smoother. IEEE Trans. Aero. Electron. Syst. 52(5), 2586–2596 (2016)

    Article  Google Scholar 

  9. Y.L. Huang, Y.G. Zhang, Y. Zhao, J. Chambers, A novel robust Gaussian-Student’s t mixture distribution based Kalman filter. IEEE Trans. Signal Process. 67(13), 3606–3620 (2019)

    Article  MathSciNet  Google Scholar 

  10. Y.L. Huang, Y.G. Zhang, N. Li, S.M. Naqvi, J. Chambers, A robust Student’s t based cubature filter. in 19th International Conference on Information Fusion (FUSION) pp. 9–16 (2016)

  11. Y.L. Huang, Y.G. Zhang, N. Li, J. Chambers, A robust Gaussian approximate filter for nonlinear systems with heavy-tailed measurement noises. in 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) pp. 4209–4213 (2016)

  12. Y.L. Huang, Y.G. Zhang, N. Li, J. Chambers, A robust Gaussian approximate fixed-interval smoother for nonlinear systems with heavy-tailed process and measurement noises. IEEE Signal Process. Lett. 23(4), 468–472 (2016)

    Article  Google Scholar 

  13. Y.L. Huang, Y.G. Zhang, Z.M. Wu, N. Li, J. Chambers, A Novel Robust Student’s t-based Kalman filter. IEEE Trans. Aerosp. Electron. Syst. 53(3), 1545–1554 (2017)

    Article  Google Scholar 

  14. Y.L. Huang, Y.G. Zhang, Z.M. Wu, N. Li, G. Wang, Robust Gaussian approximate filter and smoother with colored heavy tailed measurement. Acta Autom. Sin. 43(1), 114–131 (2017)

    Google Scholar 

  15. R. Izanloo, S.A. Fakoorian, H.S. Yazdi, D. Simon, Kalman filtering based on the maximum correntropy criterion in the presence of non-Gaussian noise. in Proceedings of 50th Annual Conference on Information Science and Systems (2016)

  16. B. Kovacevic, Z. Durovic, S. Glavaski, On robust Kalman filtering. Int. J. Control 56(3), 547–562 (1992)

    Article  MathSciNet  Google Scholar 

  17. C.D. Karlgaard, Robust rendezvous navigation in elliptical orbit. J. Guid. Control Dyn. 29(2), 495–499 (2006)

    Article  Google Scholar 

  18. C.D. Karlgaard, H. Schaub, Huber-based divided difference filtering. J. Guid. Control Dyn. 30(3), 885–891 (2007)

    Article  Google Scholar 

  19. H. Nurminen, T. Ardeshiri, R. Piché, F. Gustafsson, Robust inference for state-space models with skewed measurement noise. IEEE Signal Process. Lett. 22(11), 2450–2454 (2015)

    Article  Google Scholar 

  20. A. O’Hagan, J.J. Forster, Kendall’s Advanced Theory of Statistics: Bayesian Inference (Arnold, London, 2004)

    MATH  Google Scholar 

  21. M. Roth, E. Özkan, F. Gustafsson, A Student’s filter for heavy-tailed process and measurement noise. in 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) pp. 5770–5774 (2013)

  22. J. Ting, E. Theodorou, S. Schaal, Learning an outlier-robust Kalman filter. in Proceedings of 18th European Conference on Machine Learning Warsaw, Poland (2007)

  23. D. Tzikas, A. Likas, N. Galatsanos, The variational approximation for Bayesian inference. IEEE Signal Process. Mag. 26(6), 131–146 (2008)

    Article  Google Scholar 

  24. Y.D. Wang, W. Zheng, S.M. Sun, L. Li, Robust information filter based on maximum correntropy criterion. J. Guidance Control Dyn. 39(6), 1–6 (2016)

    Google Scholar 

  25. H. Zhu, H. Leung, Z. He, A variational Bayesian approach to robust sensor fusion based on Student-t distribution. Inf. Sci. 221(2013), 201–214 (2012)

    MATH  Google Scholar 

  26. Y.G. Zhang, G.L. Jia, N. Li, M.M. Bai, A Novel adaptive Kalman filter with colored measurement noise. IEEE Access 6, 74569–74577 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the National Natural Science Foundation of China under Grant Nos. 61773133 and 61633008.

Appendix

Appendix

If the joint PDF of \(\zeta _k^{c(i+1)}\) and \(\mathbf {y}_k\) conditioned on \(\mathbf {y}_{1:k-1}\), i.e., \(p({{\zeta }}_{k}^{c(i+1)},\mathbf {y}_k|\mathbf {y}_{k-1})\) is Gaussian, \(p(\mathbf {x}_{k}^{c(i+1)}|\mathbf {y}_{k})\) and \(p(\mathbf {x}_{k-1}^{c(i+1)}|\mathbf {y}_{k})\), respectively, can be computed as Gaussian with mean \(\hat{\mathbf {x}}_{k|k}^{c(i+1)}\) and corresponding covariance matrix \(\mathbf {P}_{k|k}^{c(i+1)}\) can be computed as Gaussian with mean \(\hat{\mathbf {x}}_{k-1|k}^{c(i+1)}\) and corresponding covariance matrix \(\mathbf {P}_{k-1|k}^{c(i+1)}\), and the covariance matrix \(\mathbf {P}_{k-1,k|k}^{c(i+1)}\) as the unified form:

$$\begin{aligned} \mathbf {P}_{k|k-1}^{c\mathrm {xy}(i+1)}= & {} \left[ \mathbf {P}_{k|k-1}^{c(i+1)}\quad \mathbf {P}_{k-1,k|k-1}^{c(i+1){T}}\right] \mathbf {G}_{k}^{{T}} \end{aligned}$$
(75)
$$\begin{aligned} \mathbf {P}_{k|k-1}^{c\mathrm {yy}(i+1)}= & {} \mathbf {G}_{k}\hat{{\varvec{\Phi }}}_{k}^{(i+1)}\mathbf {G}_{k}^{{T}}+\hat{\mathbf {C}}_{k}^{(i+1)} \end{aligned}$$
(76)
$$\begin{aligned} \mathbf {K}_{k}^{c(i+1)}= & {} \mathbf {P}_{k|k-1}^{c\mathrm {xy}(i+1)}\left( \mathbf {P}_{k|k-1}^{c\mathrm {yy}(i+1)}\right) ^{-1} \end{aligned}$$
(77)
$$\begin{aligned} \hat{\mathbf {x}}_{k|k}^{c(i+1)}= & {} \hat{\mathbf {x}}_{k|k-1}^c+\mathbf {K}_{k}^{c(i+1)}\left( \mathbf {y}_{k}-\hat{\mathbf {y}}_{k|k-1}\right) \end{aligned}$$
(78)
$$\begin{aligned} \mathbf {P}_{k|k}^{c(i+1)}= & {} \mathbf {P}_{k|k-1}^{c(i+1)}-\mathbf {K}_{k}^{c(i+1)}\mathbf {P}_{k|k-1}^{c\mathrm {yy}}\left( {\mathbf {K}_{k}^{c(i+1)}}\right) ^{{T}} \end{aligned}$$
(79)

The state estimation vector \(\hat{\mathbf {x}}_{k-1|k}^{c(i+1)}\) in (37) and the corresponding estimation error covariance matrix \(\mathbf {P}_{k-1|k}^{c(i+1)}\) are formulated as

$$\begin{aligned} \mathbf {P}_{k-1,k|k-1}^{c\mathrm {xy}(i+1)}= & {} \left[ \mathbf {P}_{k-1,k|k-1}^{c(i+1)}\quad \mathbf {P}_{k-1|k-1}^{c(i+1){T}}\right] \mathbf {G}_{k} \end{aligned}$$
(80)
$$\begin{aligned} \mathbf {K}_{k-1}^{cs(i+1)}= & {} \mathbf {P}_{k-1,k|k-1}^{c\mathrm {xy}(i+1)}\left( \mathbf {P}_{k|k-1}^{c\mathrm {yy}(i+1)}\right) ^{-1} \end{aligned}$$
(81)
$$\begin{aligned} \hat{\mathbf {x}}_{k-1|k}^{c(i+1)}= & {} \hat{\mathbf {x}}_{k-1|k-1}^c+\mathbf {K}_{k-1}^{cs(i+1)}\left( \mathbf {y}_{k}-\hat{\mathbf {y}}_{k|k-1}\right) \end{aligned}$$
(82)
$$\begin{aligned} \mathbf {P}_{k-1|k}^{c(i+1)}= & {} \mathbf {P}_{k-1|k-1}^{c(i+1)}-\mathbf {K}_{k-1}^{cs(i+1)}\mathbf {P}_{k|k-1}^{c\mathrm {yy}(i+1)}\left( {\mathbf {K}_{k-1}^{cs(i+1)}}\right) ^{{T}} \end{aligned}$$
(83)

The covariance matrix \(\mathbf {P}_{k-1,k|k}^{c(i+1)}\) in (38) is given by

$$\begin{aligned} \mathbf {P}_{k-1,k|k}^{c(i+1)}=\mathbf {P}_{k-1,k|k-1}^{c(i+1)}-\mathbf {K}_{k-1}^{cs(i+1)}\mathbf {P}_{k|k-1}^{c\mathrm {yy}(i+1)}\left( {\mathbf {K}_{k}^{c(i+1)}}\right) ^{{T}} \end{aligned}$$
(84)

Proof

Since the joint PDF of \(\zeta _k^{c(i+1)}\) and \(\mathbf {y}_k\) conditioned on \(\mathbf {y}_{1:k-1}\) is Gaussian, thus the PDF of \(\mathbf {y}_k\) conditioned on \(\mathbf {y}_{1:k-1}\) is also Gaussian. Then \(p({{\zeta }}_{k}^{c(i+1)},\mathbf {y}_k|\mathbf {y}_{k-1})\) and \(p(\mathbf {y}|\mathbf {y}_{k-1})\) can be formulated as

$$\begin{aligned} p({{\zeta }}_{k}^{c(i+1)},\mathbf {y}_k|\mathbf {y}_{k-1})= & {} \mathbf {N}\left( \left[ \begin{array}{cc} {{\zeta }}_{k}^{c(i+1)} \\ \mathbf {y}_k \end{array}\right. \right] ;\left[ \begin{array}{cc} \hat{{{\zeta }}}_{k|k-1}^{c(i+1)} \\ \hat{\mathbf {y}}_{k|k-1} \end{array}\right] , \left. \left[ \begin{array}{cc} \mathbf {P}_{k|k-1}^{c{{\zeta \zeta }}(i+1)} &{} \mathbf {P}_{k-1,k|k-1}^{c\zeta \mathrm {y}} \\ (\mathbf {P}_{k-1,k|k-1}^{c\zeta \mathrm {y}})^{\mathbf {T}} &{}\mathbf {P}_{k|k-1}^{c\mathrm {yy}} \end{array}\right] \right) \end{aligned}$$
(85)
$$\begin{aligned} p(\mathbf {y}_k|\mathbf {y}_{k-1})= & {} \mathbf {N}(\mathbf {y};\hat{\mathbf {y}}_{k|k-1},\mathbf {P}_{k|k-1}^{c\mathrm {yy}}) \end{aligned}$$
(86)

According to Bayes’ rule, we have

$$\begin{aligned} p({{\zeta }}_{k}^{c(i+1)}|\mathbf {y}_{k})=\frac{p({{\zeta }}_{k}^{c(i+1)},\mathbf {y}_k|\mathbf {y}_{k-1})}{p(\mathbf {y}_k|\mathbf {y}_{k-1})} \end{aligned}$$
(87)

Let \({\Sigma }= \left[ \begin{array}{cc} \mathbf {P}_{k|k-1}^{c{{\zeta \zeta }}(i+1)} &{} \mathbf {P}_{k-1,k|k-1}^{c\zeta \mathrm {y}} \\ (\mathbf {P}_{k-1,k|k-1}^{c\zeta \mathrm {y}})^{\mathrm {T}} &{}\mathbf {P}_{k|k-1}^{c\mathrm {yy}} \end{array}\right] \), we obtain

$$\begin{aligned} p({{\zeta }}_{k}^{c(i+1)},\mathbf {y}_k|\mathbf {y}_{k-1})=\frac{1}{\sqrt{|2\pi {\Sigma }|}}\mathrm {exp}\left( -\frac{1}{2}\left[ (\hat{{{\zeta }}}_{k|k-1}^{c(i+1)})^{T}\right. \right. \left. (\hat{\mathbf {y}}_{k|k-1})^{T}\right] \left. {\Sigma }^{-1}\left[ \begin{array}{cc} \hat{{{\zeta }}}_{k|k-1}^{c(i+1)} \\ \hat{\mathbf {y}}_{k|k-1} \end{array}\right] \right) \end{aligned}$$
(88)

According to (88), we rewrite \({\Sigma }\) as follows:

$$\begin{aligned} {\Sigma }= \left[ \begin{array}{cc} \mathbf {I}_{2n} &{} \mathbf {K}_{k}^{c\zeta (i+1)} \\ \mathbf {0}_{m\times 2n} &{} \mathbf {I}_{m} \end{array}\right] \left[ \begin{array}{cc} \hat{{\varvec{\Phi }}}_{k}^{(i+1)} &{} \mathbf {0}_{2n\times m} \\ \mathbf {0}_{m\times 2n} &{}\mathbf {P}_{k-1|k-1}^{c\mathrm {yy}} \end{array}\right] \left[ \begin{array}{cc} \mathbf {I}_{2n} &{} \mathbf {0}_{2n\times m} \\ (\mathbf {K}_{k}^{c\zeta (i+1)})^{\mathrm{T}} &{} \mathbf {I}_{m} \end{array}\right] \end{aligned}$$
(89)

where \(\mathbf {K}_{k}^{c\zeta (i+1)}\), \({\varvec{\Phi }}_{k|k}^{(i+1)}\) and \({\varvec{\Phi }}_{k|k}^{(i+1)}\) are given by

$$\begin{aligned} \mathbf {K}_{k}^{c\zeta (i+1)}= & {} \mathbf {P}_{k|k-1}^{c\zeta {\mathrm {y}}}\left( \mathbf {P}_{k|k-1}^{c\mathrm {yy}}\right) ^{-1} \end{aligned}$$
(90)
$$\begin{aligned} \mathbf {P}_{k|k-1}^{c\mathrm {yy}}= & {} \mathbf {G}_{k}\hat{{\varvec{\Phi }}}_{k}^{(i+1)}\mathbf {G}_{k}^{{T}}+\hat{\mathbf {C}}_{k}^{(i+1)} \end{aligned}$$
(91)
$$\begin{aligned} {\varvec{\Phi }}_{k|k}^{(i+1)}= & {} \hat{{\varvec{\Phi }}}_{k}^{(i+1)}-\mathbf {K}_{k}^{c\zeta (i+1)}\mathbf {P}_{k|k-1}^{c\mathrm {yy}}(\mathbf {K}_{k}^{c\zeta (i+1)})^{T} \end{aligned}$$
(92)

\(|{\Sigma }|\) and \({\Sigma }^{-1}\) can be obtained as follows, respectively:

$$\begin{aligned} \left| {\Sigma }\right|= & {} \left| {\varvec{\Phi }}_{k|k}^{(i+1)}\right| \left| \mathbf {P}_{k|k-1}^{c\mathrm {yy}}\right| \end{aligned}$$
(93)
$$\begin{aligned} {\Sigma }^{-1}= & {} \left[ \begin{array}{cc} \mathbf {I}_{2n} &{} \mathbf {0}_{2n\times m} \\ -(\mathbf {K}_{k}^{c\zeta (i+1)})^{\mathrm{T}} &{} \mathbf {I}_{m} \end{array}\right] \left[ \begin{array}{cc} ({\varvec{\Phi }}_{k|k}^{(i+1)})^{-1} &{} \mathbf {0}_{2n\times m} \\ \mathbf {0}_{m\times 2n} &{}(\mathbf {P}_{k-1|k-1}^{c\mathrm {yy}})^{-1} \end{array}\right] \left[ \begin{array}{cc} \mathbf {I}_{2n} &{} -\mathbf {K}_{k}^{c\zeta (i+1)} \\ \mathbf {0}_{m\times 2n} &{} \mathbf {I}_{m} \end{array}\right] \nonumber \\ \end{aligned}$$
(94)

Substituting (92) and (93) into (89), and with the predicted measurement PDF \(p(\mathbf {y}_k|\mathbf {y}_{k-1})\) formulated in (86), we obtain

$$\begin{aligned}&p({{\zeta }}_{k}^{c(i+1)},\mathbf {y}_k|\mathbf {y}_{k-1})=\frac{1}{\sqrt{\left| 2\pi {\varvec{\Phi }}_{k|k}^{(i+1)}\right| \left| 2\pi \mathbf {P}_{k|k-1}^{c\mathrm {yy}}\right| }}\mathrm {exp}\left\{ -\frac{1}{2}\left( \tilde{{{\zeta }}}_{k|k-1}^{c(i+1)}-\mathbf {K}_{k}^{c\zeta (i+1)}\right. \right. \nonumber \\&\qquad \times \left. \tilde{\mathbf {y}}_{k|k-1}\right) ^{T}\left. {{\varvec{\Phi }}_{k|k}^{(i+1)}}^{-1}\right. \left( \tilde{{{\zeta }}}_{k|k-1}^{c(i+1)}\right. \left. \left. -\mathbf {K}_{k}^{c\zeta (i+1)}\tilde{\mathbf {y}}_{k|k-1}\right) -\frac{1}{2}\tilde{\mathbf {y}}_{k|k-1}^{T}\mathbf {P}_{k|k-1}^{c\mathrm {yy}}\tilde{\mathbf {y}}_{k|k-1}\right\} \nonumber \\&\quad =\mathrm {N}\left( {{\zeta }}_{k}^{c(i+1)};\hat{{{\zeta }}}_{k|k}^{c(i+1)},{\varvec{\Phi }}_{k|k}^{(i+1)}\right) p(\mathbf {y}_k|\mathbf {y}_{k-1}) \end{aligned}$$
(95)

where \(\hat{{{\zeta }}}_{k|k}^{c(i+1)}=\hat{{{\zeta }}}_{k|k-1}^{c(i+1)}-\mathbf {K}_{k}^{c\zeta (i+1)}(\mathbf {y}_{k}-\hat{\mathbf {y}}_{k|k-1})\). Employing (94) into (87), we obtain

$$\begin{aligned} p({{\zeta }}_{k}^{c(i+1)}|\mathbf {y}_{k})=\mathrm {N}\left( {{\zeta }}_{k}^{c(i+1)};\hat{{{\zeta }}}_{k|k}^{c(i+1)},{\varvec{\Phi }}_{k|k}^{(i+1)}\right) \end{aligned}$$
(96)

Substituting (37) and (38) into (95), the mean vector \(\hat{\mathbf {x}}_{k|k}^{c(i+1)}\) and corresponding covariance matrix \(\mathbf {P}_{k|k}^{c(i+1)}\) and the mean vector \(\hat{\mathbf {x}}_{k-1|k}^{c(i+1)}\) and corresponding covariance matrix \(\mathbf {P}_{k-1|k}^{c(i+1)}\), and the covariance matrix \(\mathbf {P}_{k-1,k|k}^{c(i+1)}\) are formulated in (75)–(84). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, Gl., Li, N., Bai, Mm. et al. A Novel Student’s t-based Kalman Filter with Colored Measurement Noise. Circuits Syst Signal Process 39, 4225–4242 (2020). https://doi.org/10.1007/s00034-020-01361-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-020-01361-6

Keywords

Navigation