Skip to main content

Advertisement

Log in

Genome-wide analysis of long noncoding RNA profiles in Vero cells infected with porcine epidemic diarrhea virus

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Porcine epidemic diarrhea (PED) is an acute enteric disease caused by porcine epidemic diarrhea virus (PEDV). In China, variant PEDV causes severe watery diarrhea, vomiting, and dehydration in piglets, leading to very high morbidity and mortality. However, the pathogenesis of PEDV is still not fully understood. In our study, we analyzed the long noncoding RNA (lncRNA) and mRNA expression profiles of PEDV GDgh16 in infected Vero cells at 60 h postinfection. A total of 61,790 annotated mRNAs, 14,247 annotated lncRNAs and 1290 novel lncRNAs were identified. A total of 227 annotated lncRNAs and 13 novel lncRNAs were significantly and differentially expressed after viral infection. The Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) databases were used to identify genes adjacent to the lncRNAs, and it was found that these lncRNAs were enriched in pathways related to immune and antiviral responses. Next, we selected candidate lncRNAs and their predicted target genes for study. RT-qPCR demonstrated that these lncRNAs and genes were differentially expressed after PEDV infection. Our study investigated the function of lncRNAs involved in PEDV infection, providing new insight into the pathogenic mechanisms of PEDV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials

The genetic data presented in this paper are publicly available in the GenBank database under accession no. MG983755.

Abbreviations

PED:

Porcine epidemic diarrhea

PEDV:

Porcine epidemic diarrhea virus

GO:

Gene Ontology

KEGG:

Kyoto Encyclopedia of Genes and Genomes

RT-qPCR:

Real-time quantitative PCR

RNA-Seq:

RNA sequencing

CPC:

Coding Potential Calculator

MOI:

Multiplicity of infection

PLA2G4C:

Cytosolic phospholipase A2 gamma

TIRAP:

Toll/interleukin 1 receptor domain-containing adaptor protein

CLIP170:

Cytoplasmic linker protein 170

IL6R:

Interleukin-6 receptor

IL6:

Interleukin-6

STAT3:

Signal transducer and activator of transcription 3

References

  1. Wood EN (1977) An apparently new syndrome of porcine epidemic diarrhoea. Vet Rec 100:243–244

    CAS  PubMed  Google Scholar 

  2. Pensaert MB, de Bouck P (1978) A new coronavirus-like particle associated with diarrhea in swine. Arch Virol 58:243–247

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Sun D, Wang X, Wei S, Chen J, Feng L (2016) Epidemiology and vaccine of porcine epidemic diarrhea virus in China: a mini-review. J Vet Med Sci 78:355–363

    PubMed  Google Scholar 

  4. Song D, Park B (2012) Porcine epidemic diarrhoea virus: a comprehensive review of molecular epidemiology, diagnosis, and vaccines. Virus Genes 44:167–175

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Fan B, Jiao D, Zhao X, Pang F, Xiao Q, Yu Z et al (2017) Characterization of Chinese porcine epidemic diarrhea virus with novel insertions and deletions in genome. Sci Rep 7:44209

    PubMed  PubMed Central  Google Scholar 

  6. Lee S, Lee C (2017) Complete genome sequence of a novel S-insertion variant of porcine epidemic diarrhea virus from South Korea. Arch Virol 162:2919–2922

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Suzuki T, Shibahara T, Yamaguchi R, Nakade K, Yamamoto T, Miyazaki A et al (2016) Pig epidemic diarrhoea virus S gene variant with a large deletion non-lethal to colostrum-deprived newborn piglets. J Gen Virol 97:1823–1828

    CAS  PubMed  Google Scholar 

  8. Costa FF (2010) Non-coding RNAs: meet thy masters. BioEssays 32:599–608

    CAS  PubMed  Google Scholar 

  9. Mercer TR, Dinger ME, Mattick JS (2009) Long non-coding RNAs: insights into functions. Natrev Genet 10:155–159

    CAS  Google Scholar 

  10. Imam H, Bano AS, Patel P, Holla P, Jameel S (2015) The lncRNA NRON modulates HIV-1 replication in a NFAT-dependent manner and is differentially regulated by early and late viral proteins. Sci Rep 5:8639

    PubMed  PubMed Central  Google Scholar 

  11. Xiong Y, Yuan J, Zhang C, Zhu Y, Kuang X, Lan L et al (2015) The STAT3-regulated long non-coding RNA Lethe promote the HCV replication. Biomed Pharmacother 72:165–171

    CAS  PubMed  Google Scholar 

  12. Ouyang J, Zhu X, Chen Y, Wei H, Chen Q, Chi X et al (2014) NRAV, a long noncoding RNA, modulates antiviral responses through suppression of interferon-stimulated gene transcription. Cell Host Microbe 16:616–626

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Imamura K, Imamachi N, Akizuki G, Kumakura M, Kawaguchi A, Nagata K et al (2014) Long noncoding RNA NEAT1-dependent SFPQ relocation from promoter region to paraspeckle mediates IL8 expression upon immune stimuli. Mol Cell 53:393–406

    CAS  PubMed  Google Scholar 

  14. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628

    CAS  PubMed  Google Scholar 

  15. Winterling C, Koch M, Koeppel M, Garcia-Alcalde F, Karlas A, Meyer TF (2014) Evidence for a crucial role of a host non-coding RNA in influenza A virus replication. RNA Biol 11:66–75

    CAS  PubMed  Google Scholar 

  16. Huang JF, Guo YJ, Zhao CX, Yuan SX, Wang Y, Tang GN et al (2013) Hepatitis B virus X protein (HBx)-related long noncoding RNA (lncRNA) down-regulated expression by HBx (Dreh) inhibits hepatocellular carcinoma metastasis by targeting the intermediate filament protein vimentin. Hepatology 57:1882–1892

    CAS  PubMed  Google Scholar 

  17. Du Y, Kong G, You X, Zhang S, Zhang T, Gao Y et al (2012) Elevation of highly up-regulated in liver cancer (HULC) by hepatitis B virus X protein promotes hepatoma cell proliferation via down-regulating p18. J Biol Chem 287:26302–26311

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang Q, Chen CY, Yedavalli VS, Jeang KT (2013) NEAT1 long noncoding RNA and paraspeckle bodies modulate HIV-1 posttranscriptional expression. Mbio 4:e512–e596

    Google Scholar 

  19. Patel RK, Jain M (2012) NGS QC Toolkit: a toolkit for quality control of next generation sequencing data. PLoS ONE 7:e30619

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14:R36

    PubMed  PubMed Central  Google Scholar 

  21. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ et al (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511–515

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Kong L, Zhang Y, Ye ZQ, Liu XQ, Zhao SQ, Wei L et al (2007) CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Res 35:W345–W349

    PubMed  PubMed Central  Google Scholar 

  23. Kang YJ, Yang DC, Kong L, Hou M, Meng YQ, Wei L et al (2017) CPC2: a fast and accurate coding potential calculator based on sequence intrinsic features. Nucleic Acids Res 45:W12–W16

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL et al (2016) The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res 44:D279–D285

    CAS  PubMed  Google Scholar 

  25. Carrieri C, Laura C, Marta B, Anne B, Silvia Z, Stefania F et al (2012) Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat. Nature 491:454–457

    CAS  PubMed  Google Scholar 

  26. Ding Z, Fang L, Jing H, Zeng S, Wang D, Liu L et al (2014) Porcine epidemic diarrhea virus nucleocapsid protein antagonizes beta interferon production by sequestering the interaction between IRF3 and TBK1. J Virol 88:8936–8945

    PubMed  PubMed Central  Google Scholar 

  27. Zhang Q, Ma J, Yoo D (2017) Inhibition of NF-kappaB activity by the porcine epidemic diarrhea virus nonstructural protein 1 for innate immune evasion. Virology 510:111–126

    CAS  PubMed  Google Scholar 

  28. Zhang Q, Shi K, Yoo D (2016) Suppression of type I interferon production by porcine epidemic diarrhea virus and degradation of CREB-binding protein by nsp1. Virology 489:252–268

    CAS  PubMed  Google Scholar 

  29. Yu L, Dong J, Wang Y, Zhang P, Liu Y, Zhang L et al (2019) Porcine epidemic diarrhea virus nsp4 induces pro-inflammatory cytokine and chemokine expression inhibiting viral replication in vitro. Arch Virol 164:1147–1157

    CAS  PubMed  Google Scholar 

  30. Qian X, Xu C, Zhao P, Qi Z (2016) Long non-coding RNA GAS5 inhibited hepatitis C virus replication by binding viral NS3 protein. Virology 492:155–165

    CAS  PubMed  Google Scholar 

  31. Li J, Chen C, Ma X, Geng G, Liu B, Zhang Y et al (2016) Long noncoding RNA NRON contributes to HIV-1 latency by specifically inducing tat protein degradation. Nat Commun 7:11730

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B, Regev A et al (2011) Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 25:1915–1927

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Guttman M, Donaghey J, Carey BW, Garber M, Grenier JK, Munson G et al (2011) lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature 477:295–300

    CAS  PubMed  PubMed Central  Google Scholar 

  34. He Y, Ding Y, Zhan F, Zhang H, Han B, Hu G et al (2015) The conservation and signatures of lincRNAs in Marek's disease of chicken. Sci Rep 5:15184

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Pauli A, Valen E, Lin MF, Garber M, Vastenhouw NL, Levin JZ et al (2012) Systematic identification of long noncoding RNAs expressed during zebrafish embryogenesis. Genome Res 22:577–591

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Nelson BR, Makarewich CA, Anderson DM, Winders BR, Troupes CD, Wu F et al (2016) A peptide encoded by a transcript annotated as long noncoding RNA enhances SERCA activity in muscle. Science 351:271–275

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Stewart A, Ghosh M, Spencer DM, Leslie CC (2002) Enzymatic properties of human cytosolic phospholipase A(2)gamma. J Biol Chem 277:29526–29536

    CAS  PubMed  Google Scholar 

  38. Underwood KW, Song C, Kriz RW, Chang XJ, Knopf JL, Lin LL (1998) A novel calcium-independent phospholipase A2, cPLA2-gamma, that is prenylated and contains homology to cPLA2. J Biol Chem 273:21926–21932

    CAS  PubMed  Google Scholar 

  39. Xu S, Pei R, Guo M, Han Q, Lai J, Wang Y et al (2012) Cytosolic phospholipase A2 gamma is involved in hepatitis C virus replication and assembly. J Virol 86:13025–13037

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Narayanan KB, Park HH (2015) Toll/interleukin-1 receptor (TIR) domain-mediated cellular signaling pathways. Apoptosis 20:196–209

    CAS  PubMed  Google Scholar 

  41. Jakka P, Bhargavi B, Namani S, Murugan S, Splitter G, Radhakrishnan G (2018) Cytoplasmic linker protein CLIP170 negatively regulates TLR4 signaling by targeting the TLR adaptor protein TIRAP. J Immunol 200:704–714

    CAS  PubMed  Google Scholar 

  42. Avendano-Tamayo E, Rua A, Parra-Marin MV, Rojas W, Campo O, Chacon-Duque J et al (2019) Evaluation of variants in IL6R, TLR3, and DC-SIGN genes associated with dengue in sampled Colombian population. Biomedical 39:88–101

    Google Scholar 

  43. Revez JA, Bain LM, Watson RM, Towers M, Collins T, Killian KJ et al (2019) Effects of interleukin-6 receptor blockade on allergen-induced airway responses in mild asthmatics. Clin Transl Immunol 8:e1044

    Google Scholar 

  44. Yoshida K, Chambers I, Nichols J, Smith A, Saito M, Yasukawa K et al (1994) Maintenance of the pluripotential phenotype of embryonic stem cells through direct activation of gp130 signalling pathways. Mech Dev 45:163–171

    CAS  PubMed  Google Scholar 

  45. Nichols J, Chambers I, Smith A (1994) Derivation of germline competent embryonic stem cells with a combination of interleukin-6 and soluble interleukin-6 receptor. Exp Cell Res 215:237–239

    CAS  PubMed  Google Scholar 

  46. Shen XH, Cui XS, Lee SH, Kim NH (2012) Interleukin-6 enhances porcine parthenote development in vitro, through the IL-6/Stat3 signaling pathway. J Reprod Dev 58:453–460

    CAS  PubMed  Google Scholar 

  47. Song Y, Yang X, Shen Y, Wang Y, Xia X, Zhang AM (2019) STAT3 signaling pathway plays importantly genetic and functional roles in HCV infection. Mol Genet Genom Med 7(8):e821. https://doi.org/10.1002/mgg3.821

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Key Research and Development Program of China (2018YFD0501102), Guangdong Rural Revitalization Strategy Program (201817SY0002), National Key Technologies R&D Program (2015BAD12B02-5), Henan Scale Pig Farm Major Disease Purification and Innovative Technology Team, the Henan Science and Technology Project (182102110037), and Key and Cultivation Discipline of Xinyang Agriculture and Forestry University (ZDXK201702).

Author information

Authors and Affiliations

Authors

Contributions

LY, JD, and YL contributed equally to the work; LY and YL performed the assays and data analysis; LZ, PL, and LW performed the sequence alignment; LH contributed to the experimental design and revision of manuscript; and JD and CS wrote the manuscript. All authors reviewed and approved the final form of the manuscript.

Corresponding authors

Correspondence to Zheng Xu or Changxu Song.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethics approval and consent to participate

All of the samples were collected according to the animal ethics regulations of the National Engineering Center for Swine Breeding Industry (NECSBI 2015-16).

Additional information

Handling Editor: Sheela Ramamoorthy.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, L., Dong, J., Liu, Y. et al. Genome-wide analysis of long noncoding RNA profiles in Vero cells infected with porcine epidemic diarrhea virus. Arch Virol 165, 1969–1977 (2020). https://doi.org/10.1007/s00705-020-04694-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-020-04694-4

Navigation