Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-19T14:14:20.103Z Has data issue: false hasContentIssue false

Reconstructing Mousterian landscapes in the southeastern Pyrenees (Roca dels Bous site, Pre-Pyrenees ranges, Spain)

Published online by Cambridge University Press:  07 May 2020

Alfonso Benito-Calvo*
Affiliation:
Centro Nacional de Investigación sobre la Evolución Humana (CENIEH), Paseo Sierra de Atapuerca, 3, Burgos, Spain
Lee J. Arnold
Affiliation:
School of Physical Sciences, Environment Institute, and Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, North Terrace Campus, Adelaide, SA5005, Australia
Rafael Mora
Affiliation:
Centre d'Estudis del Patrimoni Arqueològic de la Prehistoria (CEPAP-UAB), Universitat Autonoma de Barcelona, Bellaterra, Spain
Jorge Martínez-Moreno
Affiliation:
Centre d'Estudis del Patrimoni Arqueològic de la Prehistoria (CEPAP-UAB), Universitat Autonoma de Barcelona, Bellaterra, Spain
Martina Demuro
Affiliation:
School of Physical Sciences, Environment Institute, and Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, North Terrace Campus, Adelaide, SA5005, Australia
*
*Corresponding author e-mail address: alfonso.benito@cenieh.es.

Abstract

Landscape evolution studies enable us to understand site formation processes affecting past hunter-gatherer settlements. This work presents a landscape reconstruction of Roca dels Bous site (RB), which is a reference site for the Late Mousterian occupation of the incised valleys of the southeastern Pyrenees. For this purpose, we combined geomorphological studies, stratigraphic descriptions, new single-grain optically stimulated luminescence datasets, statistical methods, and geophysical surveys. RB formed by gravitational processes induced by fluvial undermining of the Segre River during changing late Pleistocene climatic conditions. Geomorphological and chronological data combined with fluvial age-incision models suggest that, during Late Mousterian occupation, RB was located very near the Segre floodplain level and closer to water and raw material natural resources than at present. The accumulation of gravitational deposits associated with the archaeological levels occurred at rates of 0.16–0.44 m ka-1, between 55 and 47 ka, coinciding with Marine Oxygen Isotope Stage 3 (MIS3). More detailed comparison with available climatic curves suggests that the dated RB layers were potentially deposited during cold phases within MIS3. This work provides new landscape-based evidence to examine the paleoenvironmental context of Neanderthal presence in the southeastern Pre-Pyrenees, an important region in the debate regarding Neanderthal demise in Western Europe around 40 ka.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allué, E., Martínez-Moreno, J., Roy, M., Benito-Calvo, A., Mora, R., 2018. Montane pine forests in NE Iberia during MIS 3 and MIS 2. A study based on new anthracological evidence from Cova Gran (Santa Linya, Iberian Pre-Pyrenees). Review of Palaeobotany and Palynology 258, 6272.Google Scholar
Arnold, L.J., Bailey, R.M., Tucker, G.E., 2007. Statistical treatment of fluvial dose distributions from southern Colorado arroyo deposits. Quaternary Geochronology 2, 162167.10.1016/j.quageo.2006.05.003CrossRefGoogle Scholar
Arnold, L.J., Demuro, M.D., 2018. Dating and Optically Stimulated Luminescence. In López Varela, S.L. (Ed.), The Encyclopedia of Archaeological Sciences. Wiley-Blackwell, New Jersey, USA, pp. 1992.Google Scholar
Arnold, L.J., Demuro, M., Navazo Ruiz, M., 2012b. Empirical insights into multi-grain averaging effects from ‘pseudo’ single-grain OSL measurements. Radiation Measurements 47, 652658.CrossRefGoogle Scholar
Arnold, L.J., Demuro, M., Navazo Ruiz, M., Benito-Calvo, A., Pérez-González, A., 2013. OSL dating of the Middle Palaeolithic Hotel California site, Sierra de Atapuerca, north-central Spain. Boreas 42, 285305.CrossRefGoogle Scholar
Arnold, L.J., Demuro, M., Parés, J.M., Arsuaga, J.L., Aranburu, A., Bermúdez de Castro, J.M., Carbonell, E., 2014. Luminescence dating and palaeomagnetic age constraint on hominins from Sima de los Huesos, Atapuerca, Spain. Journal of Human Evolution 67, 85107.CrossRefGoogle Scholar
Arnold, L.J., Demuro, M., Parés, J.M., Pérez-González, A., Arsuaga, J.L., Bermúdez de Castro, J.M., Carbonell, E., 2015. Evaluating the suitability of extended-range luminescence dating techniques over early and Middle Pleistocene timescales: Published datasets and case studies from Atapuerca, Spain. Quaternary International 389, 167190.CrossRefGoogle Scholar
Arnold, L.J., Duval, M., Demuro, M., Spooner, N.A., Santonja, M., Pérez-González, A., 2016. OSL dating of individual quartz ‘supergrainsȁ from the Ancient Middle Palaeolithic site of Cuesta de la Bajada, Spain. Quaternary Geochronology 36, 78101.CrossRefGoogle Scholar
Arnold, L.J., Duval, M., Falguères, C., Bahain, J.-J., Demuro, M. 2012a. Portable gamma spectrometry with cerium-doped lanthanum bromide scintillators: Suitability assessments for luminescence and electron spin resonance dating applications. Radiation Measurements 47, 618.CrossRefGoogle Scholar
Arnold, L.J., Roberts, R.G., 2009. Stochastic modelling of multi-grain equivalent dose (De) distributions: Implications for OSL dating of sediment mixtures. Quaternary Geochronology 4, 204230.CrossRefGoogle Scholar
Arnold, L.J., Roberts, R.G., Galbraith, R.F., DeLong, S.B., 2009. A revised burial dose estimation procedure for optical dating of young and modern-age sediments. Quaternary Geochronology 4, 306325.CrossRefGoogle Scholar
Arnold, L. J., Roberts, R. G., MacPhee, R. D. E., Willerslev, E., Tikhonov, A. N., Brock, F., 2008. Optical dating of perennially frozen deposits associated with preserved ancient plant and animal DNA in north-central Siberia. Quaternary Geochronology 3, 114136.CrossRefGoogle Scholar
Badía, D., Martí, C., Palacio, E., Sancho, C., Poch, R.M., 2009. Soil evolution over the Quaternary period in a semiarid climate (Segre river terraces, northeast Spain). Catena 77, 165174.CrossRefGoogle Scholar
Bailey, G.N., King, G.C.P., 2011. Dynamic landscapes and human dispersal patterns: Tectonics, coastlines, and the reconstruction of human habitats. Quaternary Science Reviews 30, 15331553.CrossRefGoogle Scholar
Bailey, R.M., Arnold, L.J. 2006. Statistical modelling of single grain quartz De distributions and an assessment of procedures for estimating burial dose. Quaternary Science Reviews 25, 24752502.CrossRefGoogle Scholar
Benito-Calvo, A., Martínez-Moreno, J., Jordá Pardo, J.F., de la Torre, I., Mora Torcal, R., 2009. Sedimentological and archaeological fabrics in Palaeolithic levels of the South-Eastern Pyrenees: Cova Gran and Roca dels Bous Sites (Lleida, Spain). Journal of Archaeological Science 36, 25662577.CrossRefGoogle Scholar
Benito-Calvo, A., Ortega, A.I., Pérez-González, A., Campaña, I., Bermúdez de Castro, J.M., Carbonell, E., 2017. Palaeogeographical reconstruction of the Sierra de Atapuerca Pleistocene sites (Burgos, Spain). Quaternary International 433, 379392.CrossRefGoogle Scholar
Benito-Calvo, A., Pérez-González, A., Parés, J.M., 2008. Quantitative reconstruction of Late Cenozoic landscapes: A case study in the Sierra de Atapuerca (Burgos, Spain). Earth Surface Processes and Landforms 33, 2 (2008): 196208.CrossRefGoogle Scholar
Benito, G., Sancho, C., Peña, J.L., Machado, M.J., Rhodes, E.J., 2010. Large-scale karst subsidence and accelerated fluvial aggradation during MIS6 in NE Spain: climatic and paleohydrological implications. Quaternary Science Reviews 29, 26942704.CrossRefGoogle Scholar
Bertran, P., Texier, J.-P., 1999. Sedimentation processes and facies on a semi-vegetated talus, Lousteau, Southwestern France. Earth Surface Processes and Landforms 24, 177187.3.0.CO;2-R>CrossRefGoogle Scholar
Bøtter-Jensen, L., Mejdahl, M., 1988. Assessment of beta dose-rate using a GM multicounter system. Nuclear Tracks and Radiation Measurements 14, 187191.CrossRefGoogle Scholar
Bowler, J.M., Johnston, H., Olley, J.M., Prescott, J.R., Roberts, R.G., Shawcross, W., Spooner, N.A., 2003. New ages for human occupation and climate change at Lake Mungo, Australia. Nature 421, 837840.CrossRefGoogle ScholarPubMed
Brennan, B.J., 2003. Beta doses to spherical grains. Radiation Measurements 37, 299303.CrossRefGoogle Scholar
Calpal online, 2019. Cologne Radiocarbon Calibration & Paleoclimate Research Package: Calpal online (accessed 4.20.19). http://www.calpal-online.de/.Google Scholar
Confederación Hidrográfica del Ebro, 2019. Confederación Hidrográfica del Ebro (accessed 4.20.19). http://www.chebro.es/.Google Scholar
de la Torre, I., Martínez-Moreno, J., Mora, R., 2013. Change and Stasis in the Iberian Middle Paleolithic: Considerations on the Significance of Mousterian Technological Variability. Current Anthropology 54, S320S336.CrossRefGoogle Scholar
Demuro, M., Arnold, L.J., Aranburu, A., Gómez-Olivencia, A., Arsuaga, J.L., 2019b. Single-grain OSL dating of the Middle Palaeolithic site of Galería de las Estatuas, Atapuerca (Burgos, Spain) Quaternary Geochronology 49, 138145.CrossRefGoogle Scholar
Demuro, M., Arnold, L.J., Aranburu, A., Sala, N., Arsuaga, J.-L., 2019a. New bracketing luminescence ages constrain the Sima de los Huesos hominin fossils (Atapuerca, Spain) to MIS 12. Journal of Human Evolution 131, 7695.CrossRefGoogle Scholar
Demuro, M., Arnold, L.J., Froese, D.G., Roberts, R.G., 2013. OSL dating of loess deposits bracketing Sheep Creek tephra beds, northwest Canada: Dim and problematic single-grain OSL characteristics and their effect on multi-grain age estimates. Quaternary Geochronology 15, 6787.CrossRefGoogle Scholar
d'Errico, F., Sánchez Goñi, M.F., 2003. Neandertal extinction and the millennial scale climatic variability of OIS 3. Quaternary Science Reviews 22, 769788.CrossRefGoogle Scholar
Duller, G.A.T., 2008. Luminescence Dating: Guidelines on using luminescence dating in archaeology. English Heritage, Swindon.Google Scholar
Duval, M., Sancho, C., Calle, M., Guilarte, V., Peña-Monné, J.L., 2015. On the interest of using the multiple center approach in ESR dating of optically bleached quartz grains: Some examples from the Early Pleistocene terraces of the Alcanadre River (Ebro basin, Spain). Quaternary Geochronology 29, 5869.CrossRefGoogle Scholar
Finlayson, C., Giles Pacheco, F., Rodríguez-Vidal, J., Fa, D.A., Gutierrez López, J.M., Santiago Pérez, A., Finlayson, G., et al. , 2006. Late survival of Neanderthals at the southernmost extreme of Europe. Nature 443, 850853.CrossRefGoogle ScholarPubMed
Galbraith, R.F., Roberts, R.G., Laslett, G.M., Yoshida, H., Olley, J.M., 1999. Optical dating of single and multiple grains of quartz from Jinmium rock shelter, northern Australia: Part I, Experimental design and statistical models. Archaeometry 41, 339364.CrossRefGoogle Scholar
García-Ruiz, J.M., Valero-Garcés, B., González-Sampériz, P., Lorente, A., Martí-Bono, C., Beguería, S., Edwards, L., 2001. Stratified scree in the Central Spanish Pyrenees: Palaeoenvironmental implications. Permafrost and Periglacial Processes 12, 233242.CrossRefGoogle Scholar
García Garriga, J., Martínez Molina, K., Baena Preysler, J., 2012. Neanderthal Survival in the North of the Iberian Peninsula? Reflections from a Catalan and Cantabrian Perspective. Journal of World Prehistory 25, 81121.CrossRefGoogle Scholar
Guérin, G., Mercier, N., Adamiec, G., 2011. Dose-rate conversion factors: Update. Ancient TL 29, 58.Google Scholar
Guerrero, J., Gutiérrez, F., 2017. Gypsum scarps and asymmetric fluvial valleys in evaporitic terrains. The role of river migration, landslides, karstification and lithology (Ebro River, NE Spain). Geomorphology 297, 137152.Google Scholar
Gutiérrez, M., Lucha, P., Gutiérrez, F., Moreno, A., Guerrero, J., Martín-Serrano, A., Nozal, F., Desir, G., Marin, C., Bonachea, J., 2010. Are talus flatiron sequences in Spain climate-controlled landforms? Zeitschrift für Geomorphologie 54, 243252.CrossRefGoogle Scholar
Hardy, K., 2018. Plant use in the Lower and Middle Palaeolithic: Food, medicine, and raw materials. Quaternary Science Reviews 191, 393405.CrossRefGoogle Scholar
Higham, T., Brock, F., Peresani, M., Broglio, A., Wood, R., Douka, K. 2009. Problems with radiocarbon dating the Middle to Upper Palaeolithic transition in Italy. Quaternary Science Reviews 28, 12571267.CrossRefGoogle Scholar
Higham, T., Douka, K., Wood, R., Ramsey, C.B., Brock, F., Basell, L., Camps, M., et al. , 2014. The timing and spatiotemporal patterning of Neanderthal disappearance. Nature 512, 306–209.CrossRefGoogle ScholarPubMed
Jacobs, Z., Duller, G.A.T., Wintle, A.G., 2006. Interpretation of single-grain De distributions and calculation of De. Radiation Measurements 41, 264277.CrossRefGoogle Scholar
Jiménez-Espejo, F.J., Martínez-Ruiz, F., Finlayson, C., Paytan, A., Sakamoto, T., Ortega-Huertas, M., Finlayson, G., Iijima, K., Gallego-Torres, D., Fa, D., 2007. Climate forcing and Neanderthal extinction in Southern Iberia: insights from a multiproxy marine record. Quaternary Science Reviews 26, 836852.CrossRefGoogle Scholar
Jordá Pardo, J.F., 2005. El registro arqueológico kárstico durante el Pleistoceno superior final en la vertiente meridional de los Pirineos: geoarqueología, geodinámica y sedimentación, in: Cura, M., Sóler, N., Maroto, J. (Eds.), Praehistoria Pyrenaica. II Congrés Internacional Història dels Pirineus. Centre Associat de la UNED, pp. 129159.Google Scholar
Jordá Pardo, J.F., Martínez, J., Mora Torcal, R., Sánchez Casado, F.L., 1994. Modelos deposicionales y ocupación antrópica en el NE de la Península Ibérica durante el Paleolítico Medio, in: Pardo, Jordá, J.F. (Ed.), Geoarqueología (Actas de La 20 Reunión Nacional de Geoarqueología). Instituto Tecnológico Geominero de España y Asociación Española para el Estudio del Cuaternario, Madrid, pp. 3548.Google Scholar
Lazar, M, Schattner, M.L., 2010. Landscape evolution and hominin dispersal. Quaternary Science Reviews 29, 14951500.CrossRefGoogle Scholar
Lewis, C.J., McDonald, E.V., Sancho, C., Peña Monné, J.L., Rhodes, E.J., 2009. Climatic implications of correlated Upper Pleistocene glacial and fluvial deposits on the Cinca and Gállego Rivers (NE Spain) based on OSL dating and soil stratigraphy. Global and Planetary Change 67, 141152.CrossRefGoogle Scholar
Lewis, C.J., Sancho, C., McDonald, E.V., Peña Monné, J.L., Pueyo, E.L., Rhodes, E., Calle, M., Soto, R., 2017. Post-tectonic landscape evolution in NE Iberia using staircase terraces: Combined effects of uplift and climate. Geomorphology 292, 85103.CrossRefGoogle Scholar
Lisiecki, L.E., Raymo, M.E., 2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, 117.Google Scholar
Lucha, P., 2009. Subsidencia por disolución de evaporitas y halocinesis en el anticlinal de Barbastro y el valle del río Cardener (Cuenca Terciaria de. Ebro). Ph.D. dissertation, Universidad de Zaragoza, Zaragoza.Google Scholar
Lucha, P., Gutiérrez, F., Galve, J.P., Guerrero, J., 2012. Geomorphic and stratigraphic evidence of incision-induced halokinetic uplift and dissolution subsidence in transverse drainages crossing the evaporite-cored Barbastro-Balaguer Anticline (Ebro Basin, NE Spain). Geomorphology 171–172, 154172.CrossRefGoogle Scholar
Luckman, B.H., 2013. Processes, Transport, Deposition, and Landforms: Rockfall. In: Treatise on Geomorphology. Vol. 7, Elsevier Academic Press, pp. 174182.CrossRefGoogle Scholar
Martínez-Moreno, J., de la Torre, I., Mora, R., Casanova, J., 2010. Technical variability and change in the pattern of settlement at Roca dels Bous (southeastern Pre-Pyrenees, Spain). In: Conard, N.J., Delagnes, A. (Eds.), Settlement Dynamics of the Middle Paleolithic and Middle Stone Age. Vol. III, Kerns Verlag, Tubingen, pp. 485507.Google Scholar
Martínez-Moreno, J., Mora, R., de la Torre, I., 2004. Methodological approach for understanding Middle Palaeolithic settlement dynamics at la Roca dels Bous. In Conard, N. (Ed.), Settlement Dynamics of the Middle Paleolithic and Middle Stone Age. Vol. II, Kerns Verlag, Tübingen, pp. 393413.Google Scholar
Martínez-Moreno, J, Mora Torcal, R., de la Torre, I., 2006. La Roca dels Bous en el contexto del Paleolítico Medio final del Noreste de la Península Ibérica. Zona Arqueológica, Miscelánea en homenaje a Victoria Cabrera 7, 253262.Google Scholar
Martínez-Moreno, J., Mora Torcal, R., Roy Sunyer, M., Benito-Calvo, A., 2016. From site formation processes to human behaviour: Towards a constructive approach to depict palimpsests in Roca dels Bous. Quaternary International 417, 8293.CrossRefGoogle Scholar
Mayya, Y.S., Morthekai, P., Murari, M.K., Singhvi, A.K., 2006. Towards quantifying beta microdosimetric effects in single-grain quartz dose distribution. Radiation Measurements 41, 10321039.CrossRefGoogle Scholar
Mejdahl, V., 1979. Thermoluminescence dating: beta-dose attenuation in quartz grains. Archaeometry 21, 6172.CrossRefGoogle Scholar
Mejdahl, V., 1987. Internal radioactivity in quartz and feldspar grains. Ancient TL 5, 1017.Google Scholar
Mora, R., Benito-Calvo, A., Martínez-Moreno, J., Marcén, P.G., de La Torre, I., 2011. Chrono-stratigraphy of the Upper Pleistocene and Holocene archaeological sequence in Cova Gran (south-eastern Pre-Pyrenees, Iberian Peninsula). Journal of Quaternary Science 26, 635644.CrossRefGoogle Scholar
Mora, R., de la Torre, I., Martínez-Moreno, J., 2004. Middle Palaeolithic mobility and land use in the Southwestern Pyrenees: The example of level 10 in la Roca dels Bous (Noguera, Catalunya, Northeast Spain). In: Conard, N. (Ed.), Settlement Dynamics of the Middle Paleolithic and Middle Stone Age. Vol. II, Kerns Verlag, Tübingen, pp. 415435.Google Scholar
Mora, R., Martínez-Moreno, J., Roda, X., de la Torre, I., Benito Calvo, A., Roy, M., Samper Carro, S., Bolívar, S., Pizarro, J., Plasencia, J., 2014. The Mousterian site of Roca dels Bous (Lleida, Pre-pyrenees). In: Salas Ramos, R. (Ed.), Pleistocene and Holocene Hunter-Gatherers in Iberia and the Gibraltar Strait: The Current Archaeological Record. Burgos, pp. 159162.Google Scholar
Mora, R., Martínez-Moreno, J., Roy Sunyer, M., Benito Calvo, A., Polo-Díaz, A., Samper Carro, S., 2018. Contextual, technological and chronometric data from Cova Gran: Their contribution to discussion of the Middle-to-Upper Paleolithic transition in northeastern Iberia. Quaternary International 474, 3043.CrossRefGoogle Scholar
Murray, A.S., Wintle, A., 2000. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements 32, 5773.CrossRefGoogle Scholar
Nathan, R.P., Thomas, P.J., Jain, M., Murray, A.S., Rhodes, E.J., 2003. Environmental dose rate heterogeneity of beta radiation and its implications for luminescence dating: Monte Carlo modelling and experimental validation. Radiation Measurements 37, 305313.CrossRefGoogle Scholar
Olley, J.M., Caitcheon, G.G., Roberts, R.G., 1999. The origin of dose distributions in fluvial sediments, and the prospect of dating single grains of quartz from fluvial deposits using optically stimulated luminescence. Radiation Measurements 30, 207217.CrossRefGoogle Scholar
Olley, J.M., Pietsch, T., Roberts, R.G., 2004. Optical dating of Holocene sediments from a variety of geomorphic settings using single grains of quartz. Geomorphology 60, 337358.CrossRefGoogle Scholar
Ortega, A.I., Benito-Calvo, A., Porres, J., Pérez-González, A., Martín Merino, M.A., 2010. Applying electrical resistivity tomography to the identification of endokarstic geometries in the Pleistocene Sites of the Sierra de Atapuerca (Burgos, Spain). Archaeological Prospection 17, 233245.CrossRefGoogle Scholar
Pawley, S.M., Bailey, R.M., Rose, J., Moorlock, B.S.P., Hamblin, R.J.O., Booth, S.J., Lee, J.R., 2008. Age limits on Middle Pleistocene glacial sediments from OSL dating, north Norfolk, UK. Quaternary Science Reviews 27, 13631377.CrossRefGoogle Scholar
Peña Monné, J.L., 1983. La Conca de Tremp y Sierras Prepirenaicas comprendidas entre los Ríos Segre y Noguera Ribagorzana: Estudio geomorfológico. Instituto de Estudios Ilerdenses, Lérida.Google Scholar
Peña Monné, J.L., Pérez Alberti, A., Sampietro Vattuone, M.M., Otero, X.L., Sánchez Fabre, M., Longares Aladrén, L.A., 2018. The Holocene stratified screes from Sierra de Albarracín (Iberian Ranges, Spain) and their paleoenvironmental significance. Holocene 28, 478491.CrossRefGoogle Scholar
Peña Monné, J.L., Sancho Marcen, C., 1988. Correlación y evolución cuaternaria del sistema fluvial Segre-Cinca en su curso bajo. Cuaternario y Geomorfología 2, 7783.Google Scholar
Pocovi, A., Millán, H., Pueyo, E., Larrasoaña, J.C., Oliva, B., 2004. Estructura del frente surpirenaico. In: Vera, J.A. (Ed.), Geología de España. Sociedad Geológica de España, IGME, Madrid, pp. 328330.Google Scholar
Prescott, J.R., Hutton, J.T., 1994. Cosmic ray contributions to dose rates for luminescence and ESR dating: Large depths and long-term time variations. Radiation Measurements 23, 497500.CrossRefGoogle Scholar
Rasmussen, S.O., Bigler, M., Blockley, S.P., Blunier, T., Buchardt, S.L., Clausen, H.B., Cvijanovic, I., et al. 2014. A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quaternary Science Reviews 106, 1428.CrossRefGoogle Scholar
Rees-Jones, J., 1995. Optical dating of young sediments using fine-grain quartz. Ancient TL 13, 914.Google Scholar
Rees-Jones, J., Tite, M.S., 1997. Optical dating results for British archaeological sediments. Archaeometry 39, 177187.CrossRefGoogle Scholar
Reynolds, S.C., Bailey, G.N., King, G.C.P., 2011. Landscapes and their relation to hominin habitats: Case studies from Australopithecus sites in eastern and southern Africa. Journal of Human Evolution 60, 281298.CrossRefGoogle ScholarPubMed
Roberts, R., Bird, M., Olley, J., Galbraith, R., Lawson, E., Laslett, G., Yoshida, H., et al. , 1998. Optical and radiocarbon dating at Jinmium rock shelter in northern Australia. Nature 393, 358362.CrossRefGoogle Scholar
Roqué, C., Linares, R., Zarroca, M., Rosell, J., Pellicer, X.M., Gutiérrez, F., 2013. Chronology and paleoenvironmental interpretation of talus flatiron sequences in a sub-humid mountainous area: Tremp Depression, Spanish Pyrenees. Earth Surface Processes and Landforms 38, 15131522.Google Scholar
Roy Sunyer, M., 2016. Materias primas líticas y su explotación durante la prehistoria en el prepirineo oriental (NE de Iberia). Ph.D. dissertation, Universitat Autònoma de Barcelona, Barcelona.Google Scholar
Roy Sunyer, M., Mora Torcal, R., Plasencia Figueroa, Fco. J., Martínez-Moreno, J., Benito-Calvo, A., 2017. Quartzite selection in fluvial deposits: The N12 level of Roca dels Bous (Middle Palaeolithic, southeastern Pyrenees). Quaternary International 435, 4960.CrossRefGoogle Scholar
Sancho, C., Calle, M., Peña-Monné, J.L., Duval, M., Oliva-Urcia, B., Pueyo, E.L., Benito, G., Moreno, A., 2016. Dating the Earliest Pleistocene alluvial terrace of the Alcanadre River (Ebro Basin, NE Spain): Insights into the landscape evolution and involved processes. Quaternary International 407, 8695.CrossRefGoogle Scholar
Saula i Briansó, E., Samsó Escolà, J.M., Escuer Solé, J., Casanovas Petanas, J., 2017. Mapa Geológico de España. E 1:50.000, Hoja n° 328 (Artesa de Segre), Serie Magna. IGME, Madrid.Google Scholar
Sepulchre, P., Ramstein, G., Kageyama, M., Vanhaeren, M., Krinner, G., Sánchez-Goñi, M.-F., d'Errico, F., 2007. H4 abrupt event and late Neanderthal presence in Iberia. Earth and Planetary Science Letters 258, 283292.CrossRefGoogle Scholar
Silva, P.G., Roquero, E., López-Recio, M., Huerta, P., Martínez-Graña, A.M., 2016. Chronology of fluvial terrace sequences for large Atlantic rivers in the Iberian Peninsula (Upper Tagus and Duero drainage basins, Central Spain). Quaternary Science Reviews. DOI: 10.1016/j.quascirev.2016.05.027.CrossRefGoogle Scholar
Silva, P.G., Roquero, E., López-Recio, M., Huerta, P., Tapias, F., 2013. Statistical approach to the chronosequence of fluvial terraces in the Tagus and Duero Basins (Central Spain). In: Baena, R., Fernández, J.J., Guerrero, I. (Eds.), El Cuaternario Ibérico: Investigación En El S. XXI, VIII Reunión de Cuaternario Ibérico, Sevilla-La Rinconada. AEQUA, Camas, Sevilla, pp. 2933.Google Scholar
Stange, K.M., van Balen, R., Carcaillet, J., Vandenberghe, J., 2013a. Terrace staircase development in the Southern Pyrenees Foreland: Inferences from 10Be terrace exposure ages at the Segre River. Global and Planetary Change 101, 97112.CrossRefGoogle Scholar
Stange, K.M., van Balen, R., Vandenberghe, J., Peña, J.L., Sancho, C., 2013b. External controls on Quaternary fluvial incision and terrace formation at the Segre River, Southern Pyrenees. Tectonophysics 602, 316331.CrossRefGoogle Scholar
Svensson, A., Andersen, K.K., Bigler, M., Clausen, H.B., Dahl-Jensen, D., Davies, S.M., Johnsen, , et al. , 2008. A 60 000 year Greenland stratigraphic ice core chronology. Climate of the Past 4, 4757.CrossRefGoogle Scholar
Terradas, X., Mora, R., Martínez, J., Casellas, S., 1993. La Roca dels Bous en el contexto de la transición Paleolítico Medio-Superior en el NE de la Península Ibérica. Cabrera, V. (ed.): El origen del hombre moderno en el suroeste de Europa: 247257. UNED.Google Scholar
Van Steijn, H., 2011. Stratified slope deposits: Periglacial and other processes involved. Geological Society London Special Publication 342, 213226.CrossRefGoogle Scholar
Vidal-Matutano, P., 2018. Anthracological data from Middle Palaeolithic contexts in Iberia: What do we know? Munibe Antropologia-Arkeologia 69, 520.Google Scholar
Vidal-Matutano, P., Pérez-Jordà, G., Hernández, C.M., Galván, B., 2018. Macrobotanical evidence (wood charcoal and seeds) from the Middle Palaeolithic site of El Salt, Eastern Iberia: Palaeoenvironmental data and plant resources catchment areas. Journal of Archaeological Science: Reports 19, 454464.CrossRefGoogle Scholar
Wilson, L., 2011. Raw material economics in their environmental context: An example from the Middle Palaeolithic of southern France. Geological Society London Special Publications 352, 163180.CrossRefGoogle Scholar
Wood, R., 2015. From revolution to convention: the past, present and future of radiocarbon dating. Journal of Archaeological Science 56, 6172.CrossRefGoogle Scholar
Wood, R.E., Barroso-Ruíz, C., Caparrós, M., Jordá Pardo, J.F., Galván Santos, B., Higham, T.F.G., 2013. Radiocarbon dating casts doubt on the late chronology of the Middle to Upper Palaeolithic transition in southern Iberia. Proceedings of the National Academy of Sciences of the United States of America 110, 27812786.CrossRefGoogle ScholarPubMed
Zilhão, J., 2009. The Ebro frontier revisited. In: Camps, M., Szmidt, C. (Eds.) The Mediterranean from 50.000 to 25.000 BP: turning points and new directions. Oxbow Books, Oxford, pp. 293312.Google Scholar
Supplementary material: File

Benito-Calvo et al. supplementary material

Benito-Calvo et al. supplementary material 1

Download Benito-Calvo et al. supplementary material(File)
File 8.1 MB
Supplementary material: File

Benito-Calvo et al. supplementary material

Benito-Calvo et al. supplementary material 2

Download Benito-Calvo et al. supplementary material(File)
File 161.8 KB