Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-23T09:20:34.366Z Has data issue: false hasContentIssue false

The “missing glaciations” of the Middle Pleistocene

Published online by Cambridge University Press:  04 February 2020

Philip D. Hughes*
Affiliation:
Department of Geography, School of Environment, Education and Development, University of Manchester, Oxford Road, ManchesterM13 9PL, United Kingdom
Philip L. Gibbard
Affiliation:
Scott Polar Research Institute, University of Cambridge, CambridgeCB2 1ER, United Kingdom
Jürgen Ehlers
Affiliation:
Hellberg 2a, D-21514Witzeeze, Germany
*
*Corresponding author e-mail address: philip.hughes@manchester.ac.uk (P.D. Hughes).

Abstract

Global glaciations have varied in size and magnitude since the Early–Middle Pleistocene transition (~773 ka), despite the apparent regular and high-amplitude 100 ka pacing of glacial–interglacial cycles recorded in marine isotope records. The evidence on land indicates that patterns of glaciation varied dramatically between different glacial–interglacial cycles. For example, Marine Isotope Stages (MIS) 8, 10, and 14 are all noticeably absent from many terrestrial glacial records in North America and Europe. However, globally, the patterns are more complicated, with major glaciations recorded in MIS 8 in Asia and in parts of the Southern Hemisphere, such as Patagonia, for example. This spatial variability in glaciation between glacial–interglacial cycles is likely to be driven by ice volume changes in the West Antarctic Ice Sheet and associated interhemispheric connections through ocean–atmosphere circulatory changes. The weak global glacial imprint in some glacial–interglacial cycles is related to the pattern of global ice buildup. This is caused by feedback mechanisms within glacial systems themselves that partly result from long-term orbital changes driven by eccentricity.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Amblas, D., Dowdeswell, J.A., 2018. Physiographic influences on dense shelf-water cascading down the Antarctic continental slope. Earth Science Reviews 185, 887900.CrossRefGoogle Scholar
Arndt, J.E., Schenke, H.W., Jakobsson, M., Nitsche, F., Buys, G., Goleby, B., Rebesco, M., et al. , 2013. The International Bathymetric Chart of the Southern Ocean (IBCSO) Version 1.0—a new bathymetric compilation covering circum-Antarctic waters. Geophysical Research Letters 40, 31113117.CrossRefGoogle Scholar
Astakhov, V., 2004. Pleistocene ice limits in Russian northern lowlands. In: Ehlers, J., Gibbard, P.L. (Eds.), Quaternary Glaciations—Extent and Chronology. Part 1, Europe. Developments in Quaternary Sciences 2. Elsevier, Amsterdam, pp. 309319.CrossRefGoogle Scholar
Astakhov, V., 2011. Ice margins of northern Russia revisited. In: Ehlers, J., Gibbard, P.L., Hughes, P.D. (Eds.), Quaternary Glaciations—Extent and Chronology: A Closer Look. Developments in Quaternary Sciences 15. Elsevier, Amsterdam, pp. 114.Google Scholar
Astakhov, V., Shkatova, V., Zastrozhnov, A., Chuyko, M., 2016. Glaciomorphological map of the Russian Federation. Quaternary International 420, 414.CrossRefGoogle Scholar
Bahr, D.B., Pfeffer, W.T., Sassolas, C., Meier, M.F., 1998. Response time of glaciers as a function of size and mass balance: 1. Theory. Journal of Geophysical Research 103, 97779782.CrossRefGoogle Scholar
Barendregt, R.W., Duk-Rodkin, A., 2011. Chronology and extent of late Cenozoic ice sheets in North America: a magnetostratigraphical assessment. In: Ehlers, J., Gibbard, P.L., Hughes, P.D. (Eds.), Quaternary Glaciations—Extent and Chronology, A Closer Look. Developments in Quaternary Sciences 15. Elsevier, Amsterdam, pp. 419426.CrossRefGoogle Scholar
Barrell, D.J.A., 2011. Quaternary glaciers of New Zealand. In: Ehlers, J., Gibbard, P.L., Hughes, P.D. (Eds.), Quaternary Glaciations—Extent and Chronology: A Closer Look. Developments in Quaternary Sciences 15. Elsevier, Amsterdam, pp. 10471064.CrossRefGoogle Scholar
Barrows, T.T., Stone, J.O., Fifield, L.K., Cresswell, R.G., 2002. The timing of the last glacial maximum in Australia. Quaternary Science Reviews 21, 159173.CrossRefGoogle Scholar
Batchelor, C.L., Margold, M., Krapp, M., Murton, D.K., Dalton, A.S., Gibbard, P.L., Stokes, C.R., Murton, J.B., Manica, A., 2019. The configuration of Northern Hemisphere ice sheets through the Quaternary. Nature Communications 10:3713.CrossRefGoogle ScholarPubMed
Beets, D., Meijer, T., Beets, C., Cleveringa, P., Laban, C., van der Spek, A., 2005. Evidence for a middle Pleistocene glaciation of MIS 8 age in the southern North Sea. Quaternary International 133–134, 719.CrossRefGoogle Scholar
Berger, A., 1992. Orbital Variations and Insolation Database. IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series # 92-007. NOAA/NGDC Paleoclimatology Program, Boulder, CO.Google Scholar
Berger, A., Loutre, M.F., 1991. Insolation values for the climate of the last 10 million years. Quaternary Sciences Reviews 10, 297317.CrossRefGoogle Scholar
Bigg, G.R., Levine, R.C., Clark, C.D., Greenwood, S.L., Haflidason, H., Hughes, A.L.C., Nygård, A., Sejrup, H.P., 2010. Last glacial ice-rafted debris off southwestern Europe: the role of the British–Irish Ice Sheet. Journal of Quaternary Science 25, 689699.CrossRefGoogle Scholar
Biñka, K., Marks, L., 2018. Terrestrial versus marine archives: biostratigraphical correlation of the Middle Pleistocene lacustrine records from central Europe and their equivalents in the deep-sea cores from the Portuguese margin. Geological Quarterly 62, 6980.CrossRefGoogle Scholar
Bintanja, R., Roderik, S.W., van de Wal, O.J., 2005. Modeled atmospheric temperatures and global sea levels over the past million years. Nature 437, 125128.CrossRefGoogle Scholar
Bolliger, T., Feijfar, O., Graf, H.R., Kalin, D.W., 1996. Vorläufige Mitteilung über Funde von pliozanen Kleinsäugern aus den Höheren Deckenschottern des Irchels (Kt. Zürich). Eclogae geologicae Helvetiae 89, 10431048.Google Scholar
Bolshiyanov, D.Y., Savatuygin, L.M., Shneider, G.V., Molodkov, A.N., 1998. New data about modern and ancient glaciations of the Taimyro-Severozemlskaya region. [In Russian.] Materialny glyatchiologicheskich issledovanii 85, 219222.Google Scholar
Bradwell, T., Stoker, M., Larter, R., 2007. Geomorphological signature and flow dynamics of the Minch palaeo-ice stream, NW Scotland. Journal of Quaternary Science 22, 609617.CrossRefGoogle Scholar
Braun, D., 2011. The glaciation of Pennsylvania, USA. In: Ehlers, J., Gibbard, P.L., Hughes, P.D. (Eds.), Quaternary Glaciations—Extent and Chronology: A Closer Look. Developments in Quaternary Sciences 15. Elsevier, Amsterdam, pp. 521530.CrossRefGoogle Scholar
Bridgland, D.R., Howard, A.J., White, M.J., White, T.S. (Eds.), 2014. Quaternary of the Trent. Oxbow Books, Oxford.CrossRefGoogle Scholar
Broecker, W.S., 1998. Paleocean circulation during the last deglaciation: a bipolar seesaw? Paleoceanography 13, 119121.CrossRefGoogle Scholar
Broecker, W.S., van Donk, J., 1970. Insolation changes, ice volumes, and the O18 record in deep-sea cores. Reviews of Geophysics 8, 169198.CrossRefGoogle Scholar
Calvet, M., 2004. The Quaternary glaciations of the Pyrenees. In: Ehlers, J., Gibbard, P. L. (Eds.): Quaternary Glaciations—Extent and Chronology. Part 1, Europe. Developments in Quaternary Sciences 2. Amsterdam, Elsevier, pp. 119128.CrossRefGoogle Scholar
Caspers, G., Jordan, H., Merkt, J., Meyer, K.-D., Müller, H., Streif, H., 1995. Niedersachsen. In: Benda, L. (Ed.), Das Quartär Deutschlands. Borntraeger, Stuttgart, pp. 2358.Google Scholar
Cheng, H., Edwards, L., Broecker, W.S., Denton, G.H., Kong, X., Wang, Y., Zhang, R., Wang, X., 2009. Ice age terminations. Science 326, 248252.CrossRefGoogle ScholarPubMed
Claquin, T., Roelandt, C., Kohfeld, K., Harrison, S., Tegen, I., Prentice, I., Balkanski, Y., et al. , 2003. Radiative forcing of climate by ice-age atmospheric dust. Climate Dynamics 20, 193202.CrossRefGoogle Scholar
Clark, P.U., Pollard, D., 1998. Origin of the Middle Pleistocene transition by ice sheet erosion of regolith. Paleoceanography 13, 19.CrossRefGoogle Scholar
Cohen, K.M., Gibbard, P., 2011. Global Chronostratigraphical Correlation Table for the Last 2.7 Million Years. Subcommission on Quaternary Stratigraphy (International Commission on Stratigraphy), Cambridge, UK. http://quaternary.stratigraphy.org/charts.Google Scholar
Colhoun, E.A., 1985. The glaciations of the West Coast Range, Tasmania. Quaternary Research 24, 3959.CrossRefGoogle Scholar
Colhoun, E.A., Barrows, T.T., 2011. The glaciation of Australia. In: Ehlers, J., Gibbard, P.L., Hughes, P.D. (Eds.), Quaternary Glaciations—Extent and Chronology: A Closer Look. Developments in Quaternary Sciences 15. Elsevier, Amsterdam, pp. 10371045.CrossRefGoogle Scholar
Crowley, T., 1992. North Atlantic deepwater cools the Southern Hemisphere. Paleoceanography 7, 489497.CrossRefGoogle Scholar
Curry, B.B., Grimley, D.A. and McKay, E.D. III, 2011, Quaternary glaciations in Illinois. In: Ehlers, J., Gibbard, P.L., Hughes, P.D. (Eds.), Quaternary Glaciations—Extent and Chronology: A Closer Look: Developments in Quaternary Sciences 15. Elsevier, Amsterdam, pp. 467487.CrossRefGoogle Scholar
Davies, B.J., Roberts, D.H., Bridgland, D.R., Ó Cofaigh, C., Riding, J.B., Demarchi, B., Penkman, K., Pawley, S.M., 2012. Timing and depositional environments of a Middle Pleistocene glaciation of northeast England: new evidence from Warren House Gill, County Durham. Quaternary Science Reviews 44, 180212.CrossRefGoogle Scholar
Demuro, M., Froese, D., Arnold, L., Roberts, R., 2012. Single-grain OSL dating of glaciofluvial quartz constrains Reid glaciation in NW Canada to MIS 6. Quaternary Research 77, 305316.CrossRefGoogle Scholar
Doppler, G., Kroemer, E., Rögner, K., Wallner, J., Jerz, H., Grottenthaler, W., 2011. Quaternary stratigraphy of southern Bavaria. E&G Quaternary Science Journal 60(2–3), 329365.CrossRefGoogle Scholar
Duk-Rodkin, A., Barendregt, R.W., 2011. Stratigraphical record of glacials/interglacials in Northwest Canada. In: Ehlers, J., Gibbard, P.L., Hughes, P.D. (Eds.), Quaternary Glaciations—Extent and Chronology: A Closer Look. Developments in Quaternary Sciences 15. Elsevier, Amsterdam, pp. 661698.CrossRefGoogle Scholar
Duk-Rodkin, A., Barendregt, R.W., Froese, D.G., Weber, F., Enkin, R.J., Smith, I.R., Zazula, G.D., Waters, P., Kalssen, R., 2004. Timing and extent of Plio-Pleistocene glaciations in North-Western Canada and East-Central Alaska. In: Ehlers, J., Gibbard, P.L. (Eds.), Quaternary Glaciations—Extent and Chronology. Part 2, North America. Elsevier, Amsterdam, pp. 313345.CrossRefGoogle Scholar
Dyke, A.S., Prest, V.K., 1987. Late Wisconsinan and Holocene history of the Laurentide Ice Sheet. Géographie Physique et Quaternaire 41, 237263.CrossRefGoogle Scholar
Ehlers, J., 2011. Das Eiszeitalter. Spektrum, Heidelberg.CrossRefGoogle Scholar
Ehlers, J., Gibbard, P.L., 2007. The extent and chronology of Cenozoic Global Glaciation. Quaternary International 164–165, 620.CrossRefGoogle Scholar
Ehlers, J., Gibbard, P.L., Hughes, P.D. (Eds.), 2011a. Quaternary Glaciations—Extent and Chronology: A Closer Look. Developments in Quaternary Sciences 15. Elsevier, Amsterdam. 1108 pp.Google Scholar
Ehlers, J., Gibbard, P.L., Hughes, P.D. (Eds.), 2011b. Introduction. In: Ehlers, J., Gibbard, P.L., Hughes, P.D. (Eds.), Quaternary Glaciations—Extent and Chronology: A Closer Look. Developments in Quaternary Sciences 15. Amsterdam: Elsevier. pp. 114.Google Scholar
Ehlers, J., Gibbard, P.L., Hughes, P.D., 2018. Quaternary glaciations and chronology. In: Menzies, J., van der Meer, J.J.M. (Eds.), Past Glacial Environments. 2nd ed.Amsterdam, Elsevier, pp. 77101.CrossRefGoogle Scholar
Ehlers, J., Grube, A., H-J., S., Wansa, S., 2011c. Pleistocene glaciations of North Germany—new results. In: Ehlers, J., Gibbard, P.L., Hughes, P.D. (Eds.), Quaternary Glaciations—Extent and Chronology: A Closer Look. Developments in Quaternary Sciences 15. Amsterdam, Elsevier, pp. 149162.CrossRefGoogle Scholar
Elderfield, H., Ferretti, P., Greaves, M., Crowhurst, S., McCave, N., Hodell, D., Piotrowski, A.M., 2012. Evolution of ocean temperature and ice volume through the mid-Pleistocene climate transition. Science 337, 704709.CrossRefGoogle ScholarPubMed
Evans, D.J.A., Roberts, D.H., Bateman, M.D., Ely, J., Medialdea, A., Burke, M.J., Chiverrell, R.C., Clark, C.D., Fabel, D., 2019. A chronology for North Sea Lobe advance and recession on the Lincolnshire and Norfolk coasts during MIS 2 and 6. Proceedings of the Geologists’ Association 130, 523540.CrossRefGoogle Scholar
Fernández Mosquera, D., Marti, K., Vidal Romaní, J.R., Weigel, D., 2000. Late Pleistocene deglaciation chronology in the NW of the Iberian Peninsula using cosmic-ray produced 21Ne in quartz. Nuclear Instruments and Methods in Physical Research B 172, 832837.CrossRefGoogle Scholar
Fiebig, M., Ellwanger, D., Doppler, G., 2011. Pleistocene glaciations of southern Germany. In: Ehlers, J., Gibbard, P.L., Hughes, P.D. (Eds.), Quaternary Glaciations—Extent and Chronology: A Closer Look. Developments in Quaternary Sciences 15. Elsevier, Amsterdam, pp. 163174.CrossRefGoogle Scholar
Fletcher, W.J., Müller, U.C., Koutsodendris, A., Christanis, K., Pross, J., 2013. A centennial-scale record of vegetation and climate variability from 312 to 240ka (Marine Isotope Stages 9c-a, 8 and 7e) from Tenaghi Philippon, NE Greece. Quaternary Science Reviews 78, 108125.CrossRefGoogle Scholar
Fullerton, D.S., Colton, R.B., Bush, C.A., 2004. Limits of mountain and continental glaciations east of the Continental Divide in northern Montana and north-western North Dakota, U.S.A. In: Ehlers, J., Gibbard, P.L. (Eds.), Quaternary Glaciations—Extent and Chronology. Part 2, North America. Elsevier, Amsterdam, pp. 131150.CrossRefGoogle Scholar
Ganopolski, A., Calov, R., 2011. The role of orbital forcing, carbon dioxide and regolith in 100 kyr glacial cycles. Climate of the Past 7, 14151425.CrossRefGoogle Scholar
Ganopolski, A., Winkelmann, R., Schellnhuber, H.J., 2016. Critical insolation–CO2 relation for diagnosing past and future glacial inception. Nature 529, 200–203.Gibbard, P.L., Clark, C.D., 2011. Pleistocene glaciation limits in Great Britain. In: Ehlers, J., Gibbard, P.L., Hughes, P.D. (Eds.), Quaternary Glaciations—Extent and Chronology: A Closer Look. Developments in Quaternary Sciences 15. Elsevier, Amsterdam, pp. 7594.Google Scholar
Gibbard, P.L., Turner, C., 1990. Cold stage type sections: some thoughts on a difficult problem. Quaternaire 1, 3340.CrossRefGoogle Scholar
Gibbard, P.L., West, R.G., 2000. Quaternary chronostratigraphy: the nomenclature of terrestrial sequences. Boreas 29, 329336.CrossRefGoogle Scholar
Gibbard, P.L., West, R.G., Hughes, P.D., 2018. Pleistocene glaciation of Fenland, England, and its implications for evolution of the region. Royal Society Open Science 4, 170736.CrossRefGoogle Scholar
Gillespie, A., Molnar, P., 1995. Asynchronous maximum advances of mountain and continental glaciers. Reviews of Geophysics 33, 311364.CrossRefGoogle Scholar
Gillespie, A.R., Clark, D.H., 2011. Glaciations of the Sierra Nevada, California, USA. In: Ehlers, J., Gibbard, P.L., Hughes, P.D. (Eds.) Quaternary Glaciations—Extent and Chronology: A Closer Look. Elsevier, Amsterdam, pp. 447462.CrossRefGoogle Scholar
Gillespie, A.R., Zehfuss, P.H., 2004. Glaciations of the Sierra Nevada, California, USA. In: Ehlers, J., Gibbard, P.L. (Eds.), Quaternary Glaciations—Extent and Chronology. Part 2, North America. Elsevier, Amsterdam, pp. 131150.Google Scholar
Giraudi, C., Bodrato, G., Ricci Lucchi, M., Cipriani, N., Villa, I.M., Giaccio, B., Zuppi, G.M., 2011. The Middle and late Pleistocene glaciations in the Campo Felice basin (Central Apennines, Italy). Quaternary Research 75, 219230.CrossRefGoogle Scholar
Giraudi, C., Giaccio, B., 2017. Middle Pleistocene glaciations in the Apennines, Italy: new chronological data and preservation of the glacial record. Geological Society of London Special Publication 433, 161178.CrossRefGoogle Scholar
Graham, A.G.C., 2007. Reconstructing Pleistocene Glacial Environments in the Central North Sea Using 3D Seismic and Borehole Data. PhD thesis, University of London.Google Scholar
Graham, A.G.C., Stoker, M.S., Lonergan, L., Bradwell, T., Stewart, M.A., 2011. The Pleistocene glaciations of the North Sea Basin. In: Ehlers, J., Gibbard, P.L., Hughes, P.D. (Eds.), Quaternary Glaciations—Extent and Chronology: A Closer Look. Developments in Quaternary Sciences 15, Elsevier, Amsterdam, pp. 261278.CrossRefGoogle Scholar
Gutjahr, M., Hoogakker, B.A.A., Frank, M., McCave, N., 2010. Changes in North Atlantic deep water strength and bottom water masses during Marine Isotope Stage 3 (45–35 ka BP). Quaternary Science Reviews 29, 24512461.CrossRefGoogle Scholar
Hao, Q., Wang, L., Oldfield, F., Guo, Z., 2015. Extra-long interglacial during MIS 15-13 arising from limited extent of Arctic ice sheets in glacial MIS 14. Scientific Reports 5, 12103.CrossRefGoogle ScholarPubMed
Hays, J.D., Imbrie, J., Shackleton, N.J., 1976. Variations in the Earth's orbit: pacemaker of the ice ages. Science 194, 11211132.CrossRefGoogle ScholarPubMed
Head, M.J., Gibbard, P.L., 2005. Early–Middle Pleistocene transitions: an overview and recommendations for the defining boundary. Geological Society of London Special Publication 247, 118.CrossRefGoogle Scholar
Head, M.J., Gibbard, P.L., 2015. Formal subdivision of the Quaternary System/Period: past, present, and future. Quaternary International 383, 435.CrossRefGoogle Scholar
Head, M.J., Pillans, B., Farquhar, S.R., 2008. The Early–Middle Pleistocene transition: characterization and proposed guide for the defining boundary. Episodes 31, 255259.CrossRefGoogle Scholar
Hein, A.S., Cogez, A., Darvill, C.M., Mendelova, M., Kaplan, M.R., Herman, F., Dunai, T.J., et al. , 2017. Regional mid-Pleistocene glaciation in central Patagonia. Quaternary Science Reviews 164, 7794.CrossRefGoogle Scholar
Hein, A.S., Hulton, N.R.J., Dunai, T.J., Schnabel, C., Kaplan, M.R., Naylor, M., Xu, S., 2009. Middle Pleistocene glaciation in Patagonia dated by cosmogenic-nuclide measurements on outwash gravels. Earth and Planetary Science Letters 286, 184197.CrossRefGoogle Scholar
Hillenbrand, C.-D., Kuhn, G., Frederichs, T., 2009. Record of a Mid-Pleistocene depositional anomaly in West Antarctic continental sediments: an indicator for ice-sheet collapse. Quaternary Science Reviews 28, 11471159.CrossRefGoogle Scholar
Hobbs, W.W., 1945. The Greenland glacial anticyclone. Journal of Meteorology 2, 143153.2.0.CO;2>CrossRefGoogle Scholar
Houmark-Nielsen, M., 2004.The Pleistocene of Denmark: a review of stratigraphy and glaciation history. In: Ehlers, J., Gibbard, P.L. (Eds.), Quaternary Glaciations—Extent and Chronology. Part 1, Europe. Elsevier, Amsterdam, pp. 3546.CrossRefGoogle Scholar
Houmark-Nielsen, M., 2011. Pleistocene glaciations in Denmark: a closer look at chronology, ice dynamics and landforms. In: Ehlers, J., Gibbard, P.L., Hughes, P.D. (Eds.), Quaternary Glaciations—Extent and Chronology: A Closer Look. Developments in Quaternary Sciences 15. Elsevier, Amsterdam, pp. 4758.CrossRefGoogle Scholar
Hughes, P.D., Gibbard, P.L. 2015. A stratigraphical basis for the Last Glacial Maximum (LGM). Quaternary International 383, 174185.CrossRefGoogle Scholar
Hughes, P.D., Gibbard, P.L., 2018. Global glacier dynamics during 100 ka Pleistocene glacial cycles. Quaternary Research 90, 222243.CrossRefGoogle Scholar
Hughes, P.D., Gibbard, P.L., Ehlers, J., 2013. Timing of glaciation during the last glacial cycle: evaluating the meaning and significance of the “Last Glacial Maximum” (LGM). Earth Science Reviews 125, 171198.CrossRefGoogle Scholar
Hughes, P.D., Woodward, J.C., van Calsteren, P.C., Thomas, L.E., 2011. The glacial history of the Dinaric Alps, Montenegro. Quaternary Science Reviews 30, 33933412.CrossRefGoogle Scholar
Imbrie, J., Hays, J.D., Martinson, D.G., McIntyre, A., Mix, A.C., Morley, J.J., Pisias, N.G., Prell, W.L., Shackleton, N.J., 1984. The orbital theory of Pleistocene climate: support from a revised chronology of the marine 18O record. In: Berger, A., Imbrie, J., Hays, G., Kukla, G., Saltzman, B. (Eds.), Milankovitch and Climate. Reidel, Dordrecht, Netherlands, pp. 269306.Google Scholar
Kiernan, K., Fink, D., Greig, D., Mifud, C., 2010. Cosmogenic radionuclide chronology of pre-last glacial cycle moraines in the Western Arthur Range, Southwest Tasmania. Quaternary Science Reviews 29, 32863297.CrossRefGoogle Scholar
Kukla, G., An, Z. S., Melice, J. L., Gavin, J., Xiao, J. L., 1994. Magnetic susceptibility record of Chinese Loess. Transactions of the Royal Society of Edinburgh, Earth Science 81, 263288.CrossRefGoogle Scholar
Lambert, F., Bigler, M., Steffensen, J.P., Hutterli, M., Fischer, H., 2012. Centennial mineral dust variability in high-resolution ice core data from Dome C, Antarctica. Climate of the Past 8, 609623.CrossRefGoogle Scholar
Lambert, F., Delmonte, B., Petit, J.R., Bigler, M., Kaufmann, P.R., Hutterli, M.A., Stockler, T.F., Ruth, U., Steffensen, J.P., Maggi, V., 2008. Dust–climate couplings over the past 800,000 years from the EPICA Dome C ice core. Nature 452, 616619.CrossRefGoogle ScholarPubMed
Lang, N., Wolff, E.W., 2011. Interglacial and glacial variability from the last 800 ka in marine, ice and terrestrial archives. Climate of the Past 7, 361380.CrossRefGoogle Scholar
Lewis, A.N., 1945. Pleistocene glaciation in Tasmania. Papers and Proceedings—The Royal Society of Tasmania 1944, 4156.Google Scholar
Lindner, L., Marks, L., 1999. New approach to stratigraphy of palaeolake and glacial sediments of the younger Middle Pleistocene in mid-eastern Poland. Geological Quarterly 43(1), 18.Google Scholar
Lisiecki, L.E., Raymo, M.E., 2005. A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, PA1003.Google Scholar
Litt, T., Behre, K.-E., Meyer, K.-D., Stephan, H.-J., Wansa, S., 2007. Stratigraphische Begriffe für das Quartär des norddeutschen Vereisungsgebietes. E&G Quaternary Science Journal 56, 755.CrossRefGoogle Scholar
Manabe, S., Broccoli, A.J., 1985. The influence of continental ice sheets on the climate of an ice age. Journal of Geophysical Research 90(D1), 21672190.CrossRefGoogle Scholar
Margari, V., Skinner, L.C., Hodell, D.A., Martrat, B., Toucanne, S., Grimalt, J.O., Gibbard, P.L., Lunkka, J.P., Tzedakis, P.C., 2014. Land-ocean changes on orbital and millennial time scales and the penultimate glaciation. Geology 42, 183186.CrossRefGoogle Scholar
Margari, V., Skinner, L.C., Tzedakis, P.C., Ganopolski, A., Vautravers, M., Shackleton, N.J., 2010. The nature of millennial scale climate variability during the past two glacial periods. Nature Geoscience 3, 127131.CrossRefGoogle Scholar
Marks, L., 2011. Quaternary glaciations in Poland. In: Ehlers, J., Gibbard, P.L., Hughes, P.D. (Eds.), Quaternary Glaciations—Extent and Chronology: A Closer Look. Developments in Quaternary Sciences 15. Elsevier, Amsterdam, pp. 299304.CrossRefGoogle Scholar
McManus, J.F., Oppo, D.W., Cullen, J.L., 1999. A 0.5 million-year record of millennial-scale climate variability in the North Atlantic. Science 283, 971975.CrossRefGoogle ScholarPubMed
Mercer, J.H., 1984. Simultaneous climatic change in both hemispheres and similar bipolar interglacial warming: evidence and implications. In: Hansen, J.E., Takahashi, T. (Eds.), Climate Processes and Climate Sensitivity. Geophysical Monograph Series 29. American Geophysical Union, Washington DC, pp. 307313.CrossRefGoogle Scholar
Mudelsee, M., Schulz, M., 1997. The Mid-Pleistocene transition: onset of 100 ka cycle lags ice volume build-up by 280 ka. Earth and Planetary Science Letters 151, 117123.CrossRefGoogle Scholar
Muttoni, G., Carcano, C., Garzanti, E., Ghielmi, M., Piccin, A., Pini, R., Rogledi, S., et al. 2003. Onset of Pleistocene glaciations in the Alps. Geology 31, 989992.CrossRefGoogle Scholar
Ottesen, D., Dowdeswell, J.A., Bugge, T., 2014. Morphology, sedimentary infill and depositional environments of the Early Quaternary North Sea Basin (56–62 Grad N). Marine and Petroleum Geology 56, 123146.CrossRefGoogle Scholar
Pedro, J.B., Jochum, M., Buizert, C., He, F., Barker, S., Rasmussen, S.O., 2018. Beyond the bipolar seesaw: towards a process understanding of interhemispheric cooling. Quaternary Science Reviews 192, 2746.CrossRefGoogle Scholar
Peters, J.L., Benetti, S., Dunlop, P., Ó Cofaigh, C., Moreton, S.G., Wheeler, A.J., Clark, C.D., 2016. Sedimentology and chronology of the advance and retreat of the last British–Irish Ice Sheet on the continental shelf west of Ireland. Quaternary Science Reviews 140, 101124.CrossRefGoogle Scholar
Pollard, D., DeConto, R.M., 2009. Modelling West Antarctic ice sheet growth and collapse through the past five million years. Nature 458, 329333.CrossRefGoogle ScholarPubMed
Preusser, F., Graf, H.R., Keller, O., Krayss, E., Schlüchter, C., 2011. Quaternary glaciation history of northern Switzerland. E&G Quaternary Science Journal 60, 282305.CrossRefGoogle Scholar
Railsback, L.B., Gibbard, P.L., Head, M.J., Voarintsoa, N.R.G., Toucanne, S., 2015. An optimized scheme of lettered marine isotope substages for the last 1.0 million years, and the climatostratigraphic nature of isotope stages and substages. Quaternary Science Reviews 111, 94106.CrossRefGoogle Scholar
Rattenbury, M.S., Townsend, D.B., Johnston, M.R. (compilers), 2006. Geology of the Kaikoura Area. Institute of Geological and Nuclear Sciences 1:250,000 Geological Map 13. GNS Science, Lower Hutt, New Zealand.Google Scholar
Raymo, M.E. 1997. The timing of major climate terminations. Paleoceanography 12, 577585.CrossRefGoogle Scholar
Rial, J.A., 1999. Pacemaking the ice ages by frequency modulation of Earth's orbital eccentricity. Science 285, 564568.CrossRefGoogle ScholarPubMed
Richmond, G.M., 1986. Stratigraphy and correlation of glacial deposits of the Rocky Mountains, the Colorado Plateau and the ranges of the Great Basin. Quaternary Science Reviews 5, 99127.CrossRefGoogle Scholar
Richmond, G.M., Fullerton, D.S., 1986. Summation of Quaternary glaciations in the United States of America. Quaternary Science Reviews 5, 183196.CrossRefGoogle Scholar
Ridgwell, A., Watson, A.J., Raymo, M.E. 1999. Is the spectral signature of the 100 kyr glacial cycle consistent with a Milankovitch origin? Paleoceanography 14, 437440.CrossRefGoogle Scholar
Rohling, E.J., Grant, K., Bolshaw, M., Roberts, A.P., Siddall, M., Hemleben, C., Kucera, M., 2009. Antarctic temperature and global sea level closely coupled over the past five glacial cycles. Nature Geoscience 2, 500504.CrossRefGoogle Scholar
Rohling, E.J., Grant, K.M., Bolshaw, M., Roberts, A.P., Siddall, M., Hemleben, C., Kucera, M., et al. , 2014. Sea-level and deep-sea-temperature variability over the past 5.3 million years. Nature 508, 477482.CrossRefGoogle ScholarPubMed
Roskosch, J., Winsemann, J., Polom, U., Brandes, C., Tsukamoto, S., Weitkamp, A., Bartholomäus, W.A., Henningsen, D., Frechen, M., 2015. Luminescence dating of ice-marginal deposits in northern Germany: evidence for repeated glaciations during the Middle Pleistocene (MIS 12 to MIS 6). Boreas 44, 103126.CrossRefGoogle Scholar
Rother, H., Shulmeister, J., Rieser, U., 2010. Stratigraphy, optical dating chronology (IRSL) and depositional model of pre-LGM glacial deposits in the Hope Valley, New Zealand. Quaternary Science Reviews 29, 576592.CrossRefGoogle Scholar
Roucoux, K.H., Tzedakis, P.C., de Abreu, L., Shackleton, N.J., 2006. Climate and vegetation changes 180,000 to 345,000 years ago recorded in a deep-sea core off Portugal. Earth and Planetary Science Letters 249, 307325.CrossRefGoogle Scholar
Roucoux, K.H., Tzedakis, P.C., Frogley, M.R., Lawson, I.T., Preece, R.C., 2008. Vegetation history of the Marine Isotope Stage 7 interglacial complex at Ioannina, NW Greece. Quaternary Science Reviews 27, 13781395.CrossRefGoogle Scholar
Rovey, C.W., Balco, G., 2011. Summary of Early and Middle Pleistocene glaciations in northern Missouri, USA. In: Ehlers, J., Gibbard, P.L., Hughes, P.D. (Eds.), Quaternary Glaciations—Extent and Chronology: A Closer Look. Developments in Quaternary Sciences 15. Elsevier, Amsterdam, pp. 553561.CrossRefGoogle Scholar
Ruddiman, W.F., McIntyre, A., 1982. Severity and speed of Northern Hemisphere glaciation pulses: the limiting case? Geological Society of America Bulletin 93, 12731279.2.0.CO;2>CrossRefGoogle Scholar
Ruddiman, W.F., Raymo, M.E., Martinson, D.G., Clement, B.M., Backman, J., 1989. Pleistocene evolution of Northern Hemisphere climate. Paleoceanography 4, 353412.CrossRefGoogle Scholar
Rudenko, T.A., Fainer, Yu.B., Fainer, T.G., 1984. National Geological Map of the USSR. 1:1 000 000. New Series, Quadrangle P48,49 (Vanavara). Map of Quaternary Deposits. VSEGEI, Leningrad.Google Scholar
Ruth, U., Bigler, M., Rothlisberger, R., Siggaard-Andersen, M.L., Kipfstuhl, S., Goto- Azuma, K., Hansson, M.E., Johnsen, S.J., Lu, H.Y., Steffensen, J.P., 2007. Ice core evidence for a very tight link between North Atlantic and east Asian glacial climate. Geophysical Research Letters 34, L03706.CrossRefGoogle Scholar
Schlüchter, C. 1989. A non-classical summary of the Quaternary stratigraphy in the northern Alpine Foreland of Switzerland. Bulletin de la Société neuchâteloise de géographie 32–33, 143157.Google Scholar
Scourse, J.D., Austin, W.E.N., Sejrup, H.P., Ansari, M.H., 1999. Foraminiferal isoleucine epimerization determinations from the Nar Valley Clay, Norfolk, UK: implications for Quaternary correlations in the southern North Sea basin. Geological Magazine 136, 543560.CrossRefGoogle Scholar
Sejrup, H.P., Hjelstuen, B.O., Dahlgren, K.I.T., Haflidason, H., Kuijpers, A., Nygård, A., Praeg, D., Stoker, M., Vorren, T.O., 2005. Pleistocene glacial history of the NW European continental margin. Marine and Petroleum Geology 22, 11111129.CrossRefGoogle Scholar
Sejrup, H.P., Larsen, E., Landvik, J., King, E.L., Haflidason, H., Nesje, A., 2000. Quaternary glaciations in southern Fennoscandia: evidence from southwestern Norway and the northern North Sea region. Quaternary Science Reviews 19, 667685.CrossRefGoogle Scholar
Shackleton, N.J., 1967. Oxygen isotope analyses and Pleistocene temperatures re-assessed. Nature 215, 1517.CrossRefGoogle Scholar
Shakun, J.D., Lea, D.W., Lisiecki, L.E., Raymo, M.E., 2015. An 800-kyr record of global surface ocean δ18O and implications for ice volume-temperature coupling. Earth and Planetary Science Letters 426, 5868.CrossRefGoogle Scholar
Singer, B., Ackert, R.P., Guillou, H., 2004. 40Ar/39Ar and K-Ar chronology of Pleistocene glaciations in Patagonia. Geological Society of America Bulletin 116, 434450.CrossRefGoogle Scholar
Singer, B.S., Jicha, B.R., Mochizuki, N., Coe, R.S., 2019. Synchronizing volcanic, sedimentary, and ice core records of Earth's last magnetic polarity reversal. Science Advances 5, 8, eaaw4621.CrossRefGoogle ScholarPubMed
Sosdian, S., Rosenthal, Y., 2009. Deep-sea temperature and ice volume changes across the Pliocene-Pleistocene climate transitions. Science 325, 306310.CrossRefGoogle ScholarPubMed
Spooner, I.S., Osborn, D.G., Barendregt, R.W., Irving, E., 1996. A Middle Pleistocene (isotope stage 10) glacial sequence in the Stikine River valley, British Columbia. Canadian Journal of Earth Sciences 33, 14281438.CrossRefGoogle Scholar
Spratt, R.M., Lisiecki, L.E., 2016. A Late Pleistocene sealevel stack. Climate of the Past 12, 10791092.CrossRefGoogle Scholar
Stephan, H.-J., 2014. Climato-stratigraphic subdivision of the Pleistocene in Schleswig-Holstein, Germany and adjoining areas. E&G Quaternary Science Journal 63, 318.CrossRefGoogle Scholar
Stiff, B.J., Hansel, A.K., 2004. Quaternary glaciations in Illinois. In: Ehlers, J., Gibbard, P.L. (Eds.), Quaternary Glaciations—Extent and Chronology. Part 2, North America. Developments in Quaternary Sciences 2. Elsevier, Amsterdam, pp. 7182.CrossRefGoogle Scholar
Stocker, T.F., Johnsen, S.J., 2003. A minimum thermodynamic model for the bipolar seesaw. Paleoceanography 18, 1087.CrossRefGoogle Scholar
Stoker, M.S., Bradwell, T., 2005. The Minch palaeo-ice stream, NW sector of the British-Irish ice sheet. Journal of the Geological Society of London 162, 425428.CrossRefGoogle Scholar
Stokes, C., Tarasov, L., Dyke, A.S., 2012. Dynamics of the North American Ice Sheet complex during its inception and build-up to the Last Glacial Maximum. Quaternary Science Reviews 50, 86104.CrossRefGoogle Scholar
Sugden, D.E., Bentley, M.J., Ó Cofaigh, C., 2006. Geological and geomorphological insights into Antarctic ice sheet evolution. Philosophical Transactions of the Royal Society of London A 364, 16071625.CrossRefGoogle ScholarPubMed
Sutter, J., Fischer, H., Grosfeld, K., Karlsson, N.B., Kleiner, T., Van Liefferinge, B., Eisen, O., 2019. Modelling the Antarctic Ice Sheet across the mid-Pleistocene transition—implications for oldest ice. Cryosphere 13, 20232041.CrossRefGoogle Scholar
Svendsen, J.I., Alexanderson, H., Astakhov, V.I., Demidov, I., Dowdeswell, J.A., Funder, S., Gataullin, V., et al. , 2004. Late Quaternary ice sheet history of northern Eurasia. Quaternary Science Reviews 23, 12291271.CrossRefGoogle Scholar
Swanger, K.M., Lamp, J.L., Winckler, G., Schaefer, J.M., Marchant, D.R., 2017. Glacier advance during Marine Isotope Stage 11 in the McMurdo Dry Valleys of Antarctica. Scientific Reports 7, 41433.CrossRefGoogle ScholarPubMed
Swingedouw, D., Fichefet, T., Goosse, H., Loutre, M.F., 2009. Impact of transient freshwater releases in the Southern Ocean in the AMOC and climate. Climate Dynamics 33, 365381.CrossRefGoogle Scholar
Syverson, K.M., Colgan, P.M., 2004. The Quaternary of Wisconsin: a review of stratigraphy and glaciation history. In: Ehlers, J., Gibbard, P.L. (Eds.), Quaternary Glaciations—Extent and Chronology. Part 2, North America. Elsevier, Amsterdam, pp. 295311.CrossRefGoogle Scholar
Syverson, K.M., Colgan, P.M., 2011. The Quaternary of Wisconsin: an updated review of stratigraphy, glacial history and landforms. In: Ehlers, J., Gibbard, P.L., Hughes, P.D. (Eds.), Quaternary Glaciations—Extent and Chronology: A Closer Look. Developments in Quaternary Sciences 15. Elsevier, Amsterdam, pp. 537552.CrossRefGoogle Scholar
Tabor, C.R., Poulsen, C.J., 2016. Simulating the mid-Pleistocene transition through regolith removal. Earth and Planetary Science Letters 434, 231240.CrossRefGoogle Scholar
Thierens, M., Pirlet, H., Colin, C., Latruwe, K., Vanhaecke, F., Lee, J.R., Stuut, J.-B., et al. , 2012. Ice-rafting from the British-Irish ice sheet since the earliest Pleistocene (2.6 million years ago): implications for long-term mid-latitudinal ice-sheet growth in the North Atlantic region. Quaternary Science Reviews 44, 229240.CrossRefGoogle Scholar
Toucanne, S., Zaragosi, S., Bourillet, J.F., Cremer, M., Eynaud, F., Van Vliet-Lanoe, B., Penaud, A., et al. , 2009a.Timing of massive “Fleuve Manche” discharges over the last 350 kyr: insights into the European ice-sheet oscillations and the European drainage network from MIS 10 to 2. Quaternary Science Reviews 28, 12381256.CrossRefGoogle Scholar
Toucanne, S., Zaragosi, S., Gibbard, P.L., Bourillet, J.F., Cremer, M., Eynaud, F., Giraudeau, J., et al. , 2009b. A 1.2 my record of glaciation and fluvial discharge from the West European continental margin. Quaternary Science Reviews 28, 29742981.CrossRefGoogle Scholar
Van Husen, D., Reitner, J.M., 2011. An outline of the Quaternary stratigraphy of Austria. E&G Quaternary Science Journal 60, 366387.CrossRefGoogle Scholar
Velichko, A.A., Faustova, M.A., Pisareva, V.V., Gribchenko, Y.N., Sudakova, N.G., Lavrentiev, N.V., 2011. Glaciations of the East European Plain—distribution and chronology. In: Ehlers, J., Gibbard, P.L., Hughes, P.D. (Eds.), Quaternary Glaciations—Extent and Chronology—A Closer Look. Developments in Quaternary Sciences 15. Elsevier, Amsterdam, pp. 337360.CrossRefGoogle Scholar
Vidal Romaní, F., Mosquera, D., Marti, K., 2015. The glaciation of Serra de Quiexa-Invernadoiro and Serra do Gerês, NW Iberia. A critical review and a cosmogenic nuclide (10Be and 21Ne) chronology. Cadernos Laboratorio Xeolóxico de Laxe 38, 2745.Google Scholar
Waelbroeck, C., Labeyrie, L., Michel, E., Duplessy, J.C., McManus, J.F., Lambeck, K., Balbon, E., Labracherie, M., 2002. Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records. Quaternary Science Reviews 21, 295305.CrossRefGoogle Scholar
Ward, B.C., Bond, J.D., Froese, D., Jensen, B., 2008. Old Crow tephra (14010 ka) constrains penultimate Reid glaciation in central Yukon Territory. Quaternary Science Reviews 27, 19091915.CrossRefGoogle Scholar
White, T.S., Bridgland, D.R., Howard, A.J., Westaway, R., White, M.J., 2010. Evidence from the Trent terrace archive, Lincolnshire, UK, for lowland glaciation of Britain during the Middle and Late Pleistocene. Proceedings of the Geologists’ Association 121, 141153.CrossRefGoogle Scholar
White, T.S., Bridgland, D.R., Westaway, R., Straw, A., 2017. Evidence for a late Middle Pleistocene glaciation of the British margin of the southern North Sea. Journal of Quaternary Science 32, 261275.CrossRefGoogle Scholar
Willeit, M., Ganopolski, A., Calov, R., Brovkin, V., 2019. Mid-Pleistocene transition in glacial cycles explained by declining CO2 and regolith removal. Science Advances 5, eaav7337.CrossRefGoogle ScholarPubMed