Skip to main content
Log in

Synthesis and characterization of semiconducting sinnerite (Cu6As4S9) thin films

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Sinnerite (Cu6As4S9) is a semiconductor computed to have attractive optoelectronic properties, but little attention has been paid to its experimental synthesis and characterization. Here, the authors report the first synthesis of polycrystalline sinnerite thin films. By heating Cu3AsS4 nanoparticles in sealed ampoules with As2S2 powder, a phase transformation to Cu6As4S9 is achieved along with the formation of micronsized dense grains appropriate for device applications. The films display a bandgap of ~1.2 eV, significant photocurrent generation under simulated AM1.5 illumination, and carrier lifetimes nearing 1 ns, demonstrating the promise of sinnerite for use in photovoltaic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. C. Wadia, A.P. Alivisatos, and D.M. Kammen: Materials availability expands the opportunity for large-scale photovoltaics deployment. Environ. Sci. Technol. 43, 2072 (2009).

    Article  CAS  Google Scholar 

  2. W. Wang, M.T. Winkler, O. Gunawan, T. Gokmen, T.K. Todorov, Y. Zhu, and D.B. Mitzi: Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency. Adv. Energy Mater. 4, 1301465 (2014).

    Article  Google Scholar 

  3. T. Gershon, T. Gokmen, O. Gunawan, R. Haight, S. Guha, and B. Shin: Understanding the relationship between Cu2ZnSn(S,Se)4 material properties and device performance. MRS Commun. 4, 159 (2014).

    Article  CAS  Google Scholar 

  4. C.K. Miskin, W.-C. Yang, C.J. Hages, N.J. Carter, C.S. Joglekar, E.A. Stach, and R. Agrawal: 9.0% efficient Cu2ZnSn(S,Se)4 solar cells from selenized nanoparticle inks. Prog. Photovoltaics Res. Appl. 23, 654 (2015).

    Article  CAS  Google Scholar 

  5. W.A. Dunlap-Shohl, Y. Zhou, N.P. Padture, and D.B. Mitzi: Synthetic approaches for halide perovskite thin films. Chem. Rev. 119, 3193 (2019).

    Article  CAS  Google Scholar 

  6. T. Shi, W.-J. Yin, M. Al-Jassim, and Y. Yan: Structural, electronic, and optical properties of Cu3-V-VI4 compound semiconductors. Appl. Phys. Lett. 103, 152105 (2013).

    Article  Google Scholar 

  7. R.B. Balow, E.J. Sheets, M.M. Abu-Omar, and R. Agrawal: Synthesis and characterization of copper arsenic sulfide nanocrystals from earth abundant elements for solar energy conversion. Chem. Mater. 27, 2290 (2015).

    Article  CAS  Google Scholar 

  8. R.B. Balow, C.K. Miskin, M.M. Abu-Omar, and R. Agrawal: Synthesis and characterization of Cu3(Sb1-xAsx)S4 semiconducting nanocrystal alloys with tunable properties for optoelectronic device applications. Chem. Mater. 29, 573 (2017).

    Article  CAS  Google Scholar 

  9. T. Pauporté and D. Lincot: Electrical, optical and photoelectrochemical properties of natural enargite, Cu3AsS4. Adv. Mater. Opt. Electron. 5, 289 (1995).

    Article  Google Scholar 

  10. A. Das, A. Shamirian, and P.T. Snee: Arsenic silylamide: an effective precursor for arsenide semiconductor nanocrystal synthesis. Chem. Mater. 28, 4058 (2016).

    Article  CAS  Google Scholar 

  11. S.A. McClary, J. Andler, C.A. Handwerker, and R. Agrawal: Solution-processed copper arsenic sulfide thin films for photovoltaic applications. J. Mater. Chem. C 5, 6913 (2017).

    Article  CAS  Google Scholar 

  12. L. Yu, R.S. Kokenyesi, D.A. Keszler, and A. Zunger: Inverse design of high absorption thin-film photovoltaic materials. Adv. Energy Mater. 3, 43 (2013).

    Article  CAS  Google Scholar 

  13. S.K. Wallace, K.L. Svane, W.P. Huhn, T. Zhu, D.B. Mitzi, V. Blum, and A. Walsh: Candidate photoferroic absorber materials for thin-film solar cells from naturally occurring minerals: enargite, stephanite, and bournonite. Sustain. Energy Fuels 1, 1339 (2017).

    Article  CAS  Google Scholar 

  14. S.K. Wallace, K.T. Butler, Y. Hinuma, and A. Walsh: Finding a junction partner for candidate solar cell absorbers enargite and bournonite from electronic band and lattice matching. J. Appl. Phys. 125, 055703 (2019).

    Article  Google Scholar 

  15. R. Zhang, K. Chen, B. Du, and M.J. Reece: Screening for Cu–S based thermoelectric materials using crystal structure features. J. Mater. Chem. A 5, 5013 (2017).

    Article  CAS  Google Scholar 

  16. S.A. McClary, R.B. Balow, and R. Agrawal: Role of annealing atmosphere on the crystal structure and composition of tetrahedrite–tennantite alloy nanoparticles. J. Mater. Chem. C 6, 10538 (2018).

    Article  CAS  Google Scholar 

  17. P. Levinsky, C. Candolfi, A. Dauscher, J. Tobola, J. Hejtmánek, and B. Lenoir: Thermoelectric properties of the tetrahedrite–tennantite solid solutions Cu12Sb4-xAsxS13 and Cu10Co2Sb4-yAsyS13 (0 = x, y = 4). Phys. Chem. Chem. Phys. 21, 4547 (2019).

    Article  CAS  Google Scholar 

  18. S. Maske and B.J. Skinner: Studies of the sulfosalts of copper I. Phases and phase relations in the system Cu-As-S. Econ. Geol. 66, 901 (1971).

    Article  CAS  Google Scholar 

  19. E. Makovicky and B.J. Skinner: Studies of the sulfosalts of copper II. The crystallography and composition of sinnerite, Cu6As4S9. Am. Mineral. 57, 824 (1972).

    CAS  Google Scholar 

  20. J. Hautala and P.C. Taylor: A review of optical properties of metal chalcogenide glasses. J. Non-Cryst. Solids 141, 24 (1992).

    Article  CAS  Google Scholar 

  21. B. Yan, S. Girlani, and P.C. Taylor: Defect structure and conductivity in tetrahedrally coordinated metal chalcogenide amorphous semiconductors. Phys. Rev. B 56, 10249 (1997).

    Article  CAS  Google Scholar 

  22. L. Bindi, E. Makovicky, F. Nestola, and L. De Battisti: Sinnerite, Cu6As4S9, from the Lengenbach Quarry, Binn Valley, Switzerland: description and re-investigation of the crystal structure. Can. Mineral. 51, 851 (2013).

    Article  CAS  Google Scholar 

  23. M.V. Kovalenko, M.I. Bodnarchuk, J. Zaumseil, J.-S. Lee, and D.V. Talapin: Expanding the chemical versatility of colloidal nanocrystals capped with molecular metal chalcogenide ligands. J. Am. Chem. Soc. 132, 10085 (2010).

    Article  CAS  Google Scholar 

  24. Z. Xia, J. Zhong, M. Leng, L. Hu, D.-J.J. Xue, B. Yang, Y. Zhou, X. Liu, S. Qin, Y.-B.B. Cheng, and J. Tang: Generalized water-processed metal chalcogenide complexes: synthesis and applications. Chem. Mater. 27, 8048 (2015).

    Article  CAS  Google Scholar 

  25. W. Wu, Y. Cao, J.V. Caspar, Q. Guo, L.K. Johnson, I. Malajovich, H.D. Rosenfeld, and K.R. Choudhury: Studies of the fine-grain sub-layer in the printed CZTSSe photovoltaic devices. J. Mater. Chem. C 2, 3777 (2014).

    Article  CAS  Google Scholar 

  26. T.J. Huang, X. Yin, C. Tang, G. Qi, and H. Gong: Influence of ligands on the formation of kesterite thin films for solar cells: a comparative study. ChemSusChem 9, 1032 (2016).

    Article  CAS  Google Scholar 

  27. C.J. Hages, M.J. Koeper, C.K. Miskin, K.W. Brew, and R. Agrawal: Controlled grain growth for high performance nanoparticle-based kesterite solar cells. Chem. Mater. 28, 7703 (2016).

    Article  CAS  Google Scholar 

  28. S. McLeod, E. Alruqobah, and R. Agrawal: Liquid assisted grain growth in solution processed Cu(In,Ga)(S,Se)2. Sol. Energy Mater. Sol. Cells 195, 12 (2019).

    Article  CAS  Google Scholar 

  29. P. Kubelka and F. Munk: Ein Beitrag zur Optik der Farbanstriche (A contribution to the optics of pigments). Z. Tech. Phys. 12, 593 (1931).

    Google Scholar 

  30. R.R. Gagne, C.A. Koval, and G.C. Lisensky: Ferrocene as an internal standard for electrochemical measurements. Inorg. Chem. 19, 2854 (1980).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the National Science Foundation for funding under grant #1534691-DMR (Rapid Design of Earth Abundant Inorganic Materials for Future PVs). S.A.M. acknowledges Purdue University for a Bilsland Dissertation Fellowship. The authors thank Kyle Weideman, Yining Feng, and Professor Luna Lu for Hall effect measurements; Joseph Andler, Essam AlRuqobah, and Xianyi Hu for providing Mo films; Apurva Pradhan for helpful comments on the manuscript; Alexei Lagoutchev for helpful discussions regarding the collection of reflectance data; and Joseph Andler for the assistance with the abstract graphic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh Agrawal.

Electronic supplementary material

Supplementary material

Supplementary material

The supplementary material for this article can be found at https://doi.org/10.1557/mrc.2020.11.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McClary, S.A., Agrawal, R. Synthesis and characterization of semiconducting sinnerite (Cu6As4S9) thin films. MRS Communications 10, 188–193 (2020). https://doi.org/10.1557/mrc.2020.11

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2020.11

Navigation