Skip to main content
Log in

Phonon scattering mechanism in thermoelectric materials revised via resonant x-ray dynamical diffraction

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Engineering of thermoelectric materials requires an understanding of thermal conduction by lattice and electronic degrees of freedom. Filled skutterudites denote a large family of materials suitable for thermoelectric applications where reduced lattice thermal conduction attributed to localized low-frequency vibrations (rattling) of filler cations inside large cages of the structure. In this work, a multi-wavelength method of exploiting x-ray dynamical diffraction in single crystals of CeFe4P12 is presented and applied to resolve the atomic amplitudes of vibrations. The results suggest that the vibrational dynamics of the whole filler-cage system is the actual active mechanism behind the optimization of thermoelectric properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  1. J.G. Snyder and E.S. Toberert: Complex thermoelectric materials. Nat. Mater. 7, 105 (2008).

    Article  CAS  Google Scholar 

  2. A.J.H. McGaughey, A. Jain, H.-Y. Kim, and B. Fu: Phonon properties and thermal conductivity from first principles, lattice dynamics, and the Boltzmann transport equation featured. J. Appl. Phys. 125, 011101 (2019).

    Article  CAS  Google Scholar 

  3. Y. Zhu, Y. Liu, M. Wood, N.Z. Koocher, Y. Liu, L. Liu, T. Hu, J.M. Rondinelli, J. Hong, G.J. Snyder, and W. Xu: Synergistically optimizing carrier concentration and decreasing sound velocity in n-type AgInSe2 thermoelectrics. Chem. Mater. 31, 8182 (2019).

    Article  CAS  Google Scholar 

  4. Z.-Z. Luo, S. Cai, S. Hao, T.P. Bailey, X. Hu, R. Hanus, R. Ma, G. Tan, D.G. Chica, G.J. Snyder, C. Uher, C. Wolverton, V.P. Dravid, Q. Yan, and M.G. Kanatzidis: Ultralow thermal conductivity and high-temperature thermoelectric performance in n-type K2.5Bi8.5Se14. Chem. Mater. 31, 5943 (2019).

    Article  CAS  Google Scholar 

  5. T.J. Slade, T.P. Bailey, J.A. Grovogui, X. Hua, X. Zhang, J.J. Kuo, I. Hadar, G.J. Snyder, C. Wolverton, V.P. Dravid, C. Uher, and M.G. Kanatzidis: High thermoelectric performance in PbSe–NaSbSe2 alloys from valence band convergence and low thermal conductivity. Adv. Energy Mater. 9, 1901377 (2019).

    Article  CAS  Google Scholar 

  6. Y. Shi, N. Mashmoushi, W. Wegner, P. Jafarzadeh, Z. Sepahi, A. Assouda, and H. Kleinke: Ultralow thermal conductivity of Tl4Ag18Te11. J. Mater. Chem. C 7, 8029 (2019).

    Article  Google Scholar 

  7. H. Liu, J. Liu, R. Jing, and C. You: Anisotropic thermal conductivity in direction-specific black phosphorus nanoflakes. MRS Commun. 9, 1311 (2019).

    Article  CAS  Google Scholar 

  8. J. Ding, J.L. Niedziela, D. Bansal, J. Wang, X. He, A.F. May, G. Ehlers, D.L. Abernathy, A. Said, A. Alatas, Y. Ren, G. Arya, and O. Delaire: Anharmonic lattice dynamics and superionic transition in AgCrSe2. Proc. Natl. Acad. Sci. USA 117, 3930 (2020).

    Article  CAS  Google Scholar 

  9. R. Gurunathan, R. Hanus, M. Dylla, A. Katre, and G.J. Snyder: Analytical models of phonon–point-defect scattering. Phys. Rev. Appl. 13, 034011 (2020).

    Article  CAS  Google Scholar 

  10. K. Imasato, C. Fu, Y. Pan, M. Wood, J.J. Kuo, C. Felser, and G.J. Snyder: Metallic n-type Mg3Sb2 single crystals demonstrate the absence of ionized impurity scattering and enhanced thermoelectric performance. Adv. Mater. 32, 1908218 (2020).

    Article  CAS  Google Scholar 

  11. R.P. Hermann, F. Grandjean, and G.J. Long: Einstein oscillators that impede thermal transport. Am. J. Phys. 73, 110 (2005).

    Article  CAS  Google Scholar 

  12. W. Jeitschko and D. Braun: LaFe4P12 with filled CoAs3-type structure and isotypic lanthanoid-transition metal polyphosphides. Acta Cryst. B 33, 3401 (1977).

    Article  Google Scholar 

  13. M.H. Elsheikh, M.F.M. Sabri, S.M. Said, Y. Miyazaki, H. Masjuki, D.A. Shnawah, S. Naito, and M.B.A. Bashir: Rapid preparation of bulk AlxYb0.25Co4Sb12 (x = 0, 0.1, 0.2, 0.3) skutterudite thermoelectric materials with high figure of merit ZT = 1.36. J. Mater. Sci. 52, 5324 (2017).

    Article  CAS  Google Scholar 

  14. F. Chen, R. Liu, Z. Yao, Y. Xing, S. Bai, and L. Chen: Scanning laser melting for rapid and massive fabrication of filled skutterudites with high thermoelectric performance. J. Mater. Chem. A 6, 6772 (2018).

    Article  CAS  Google Scholar 

  15. B.M. Hudak, W. Sun, J. Mackey, A. Ullah, A. Sehirlioglu, F. Dynys, S.T. Pantelides, and B.S. Guiton: Observation of square-planar distortion in lanthanide-doped skutterudite crystals. J. Phys. Chem. C 123, 14632 (2019).

    Article  CAS  Google Scholar 

  16. J. Yu, W. Zhu, W. Zhao, Q. Luo, Z. Liu, and H. Chen: Rapid fabrication of pure p-type filled skutterudites with enhanced thermoelectric properties via a reactive liquid-phase sintering. J. Mater. Sci. 55, 7432 (2020).

    Article  CAS  Google Scholar 

  17. M.B.A. Bashir, M.F.M. Sabri, S.M. Said, Y. Miyazaki, I.A. Badruddin, D.A.A. Shnawah, E.Y. Salih, S. Abushousha, and M.H. Elsheikh: Enhancement of thermoelectric properties of Co4Sb12 skutterudite by Al and La double filling. J. Solid State Chem. 284, 121205 (2020).

    Article  CAS  Google Scholar 

  18. J. Jiang, H. Zhu, Y. Niu, Q. Zhu, S. Song, T. Zhou, C. Wang, and Z. Ren: Achieving high room-temperature thermoelectric performance in cubic AgCuTe. J. Mater. Chem. A 8, 4790 (2020).

    Article  CAS  Google Scholar 

  19. J. Yang, G.P. Meisner, D.T. Morelli, and C. Uher: Iron valence in skutterudites: transport and magnetic properties of Co1-xFexSb3. Phys. Rev. B 63, 014410 (2000).

    Article  CAS  Google Scholar 

  20. D. Cao, F. Bridges, P. Chesler, S. Bushart, E.D. Bauer, and M.B. Maple: Evidence for rattling behavior of the filler atom (L) in the filled skutterudites LT4X12 (L = Ce, Eu, Yb; T = Fe, Ru; X = P, Sb) from EXAFS studies. Phys. Rev. B 70, 094109 (2004).

    Article  CAS  Google Scholar 

  21. M.M. Koza, M.R. Johnson, R. Viennois, H. Mutka, L. Girard, and D. Ravot: Breakdown of phonon glass paradigm in La- and Ce-filled Fe4Sb12 skutterudites. Nat Mater. 7, 805 (2008).

    Article  CAS  Google Scholar 

  22. H.L. Parks, A.J.H. McGaughey, and V. Viswanathan: Uncertainty quantification in first-principles predictions of harmonic vibrational frequencies of molecules and molecular complexes. J. Phys. Chem. C 123, 4072 (2019).

    Article  CAS  Google Scholar 

  23. Z. Liu, W. Zhu, X. Nie, and W. Zao: Effects of sintering temperature on microstructure and thermoelectric properties of Ce-filled Fe4Sb12 skutterudites. J. Mater. Sci. Mater. Electron. 30, 12493 (2019).

    Article  CAS  Google Scholar 

  24. D.B. Menasche, P.A. Shade, and R.M. Suter: Accuracy and precision of near-field high-energy diffraction microscopy forward-model-based microstructure reconstructions. J. Appl. Cryst. 53, 107 (2020).

    Article  CAS  Google Scholar 

  25. Y.-F. Shen, S. Maddali, D. Menasche, A. Bhattacharya, G.S. Rohrer, and R.M. Suter: Importance of outliers: a three-dimensional study of coarsening in a-phase iron. Phys. Rev. Mater. 3, 063611 (2019).

    Article  CAS  Google Scholar 

  26. Y. Shiraishi, K. Tanabe, H. Taniguchi, R. Okazaki, and I. Terasaki: Interplay between quantum paraelectricity and thermoelectricity in the photo-Seebeck effect in a SrTiO3 single crystal featured. J. Appl. Phys. 126, 045111 (2019).

    Article  CAS  Google Scholar 

  27. F. Grandjean, A. Gérard, D.J. Braung, and W. Jeitschko: Some physical properties of LaFe4P12 type compounds. J. Phys. Chem. Solids 45, 877 (1984).

    Article  CAS  Google Scholar 

  28. G. Roman, B. Horst, O. Alim, R. Helge, S. Walter, N. Michael, G. Yuri, and L.-J. Andreas: Filled platinum germanium skutterudites MPt4Ge12 (M = Sr, Ba, La–Nd, Sm, Eu): crystal structure and chemical bonding. Z. Krist.-Cryst. Mater. 225, 531 (2010).

    Google Scholar 

  29. S.L. Morelhão and L.H. Avanci: Strength tuning of multiple waves in crystals. Acta Cryst. A 57, 192 (2001).

    Article  Google Scholar 

  30. S.L. Morelhão and S. Kycia: Enhanced X-ray phase determination by three-beam diffraction. Phys. Rev. Lett. 89, 015501 (2002).

    Article  CAS  Google Scholar 

  31. S.L. Morelhão: An X-ray diffractometer for accurate structural invariant phase determination. J. Synchrotron Radiat. 10, 236 (2003).

    Article  CAS  Google Scholar 

  32. S.L. Morelhão: Accurate triplet phase determination in non-perfect crystals–a general phasing procedure. Acta Cryst. A 59, 470 (2003).

    Article  CAS  Google Scholar 

  33. S.L. Morelhão, L.H. Avanci, and S. Kycia: Study of crystalline structures via physical determination of triplet phase invariants. Nucl. Instrum. Meth. B 238, 175 (2005).

    Article  CAS  Google Scholar 

  34. S.L. Morelhão, L.H. Avanci, and S. Kycia: Automatic X-ray crystallographic phasing at LNLS. Nucl. Instrum. Meth. B 238, 180 (2005).

    Article  CAS  Google Scholar 

  35. S.L. Morelhão, L.H. Avanci, and S. Kycia: Energy conservation in approximated solutions of multi-beam scattering problems. Nucl. Instrum. Meth. B 239, 245 (2005).

    Article  CAS  Google Scholar 

  36. J. Wu, K. Leinenweber, J.C.H. Spence, and M. O’Keeffe: Ab initio phasing of X-ray powder diffraction patterns by charge flipping. Nat. Mater. 5, 647 (2006).

    Article  CAS  Google Scholar 

  37. Z.G. Amirkhanyan, C.M.R. Remédios, Y.P. Mascarenhas, and S.L. Morelhão: Analyzing structure factor phases in pure and doped single crystals by synchrotron X-ray Renninger scanning. J. Appl. Cryst 47, 160 (2014).

    Article  CAS  Google Scholar 

  38. S.L. Morelhão, Z.G. Amirkhanyan, and C.M.R. Remédios: Absolute refinement of crystal structures by X-ray phase measurements. Acta Cryst. A 71, 291 (2015).

    Article  CAS  Google Scholar 

  39. S.L. Morelhão, C.M.R. Remédios, G.A. Calligaris, and G. Nisbet: X-ray dynamical diffraction in amino acid crystals: a step towards improving structural resolution of biological molecules via physical phase measurements. J. Appl. Cryst. 50, 689 (2017).

    Article  Google Scholar 

  40. S.L. Morelhão, C.M.R. Remédios, R.O. Freitas, and A.O. dos Santos: X-ray phase measurements as a probe of small structural changes in doped nonlinear optical crystals. J. Appl. Cryst. 44, 93 (2011).

    Article  CAS  Google Scholar 

  41. H. Sato, Y. Abe, H. Okada, T. D. Matsuda, K. Abe, H. Sugawara, and Y. Aoki: Anomalous transport properties of RFe4P12 (R = La, Ce, Pr, and Nd). Phys. Rev. B 62, 15125 (2000).

    Article  CAS  Google Scholar 

  42. M. Matsunami, K. Horiba, M. Taguchi, K. Yamamoto, A. Chainani, Y. Takata, Y. Senba, H. Ohashi, M. Yabashi, K. Tamasaku, Y. Nishino, D. Miwa, T. Ishikawa, E. Ikenaga, K. Kobayashi, H. Sugawara, H. Sato, H. Harima, and S. Shin: Electronic structure of semiconducting CeFe4P12: strong hybridization and relevance of single-impurity Anderson model. Phys. Rev. B 77, 165126 (2008).

    Article  CAS  Google Scholar 

  43. F.A. Garcia, P.A. Venegas, P.G. Pagliuso, C. Rettori, Z. Fisk, P. Schlottmann, and S.B. Oseroff: Thermally activated exchange narrowing of the Gd3+ ESR fine structure in a single crystal of Ce1-xGdxFe4P12 (x = 0.001) skutterudite. Phys. Rev. B 84, 125116 (2011).

    Article  CAS  Google Scholar 

  44. P.A. Venegas, F.A. Garcia, D.J. Garcia, G.G. Cabrera, M.A. Avila, and C. Rettori: Collapse of the Gd3+ ESR fine structure throughout the coherent temperature of the Gd-doped Kondo Semiconductor CeFe4P12. Phys. Rev. B 94, 235143 (2016).

    Article  Google Scholar 

  45. S.L. Morelhão, S. Kycia, S. Netzke, C.I. Fornari, P.H.O. Rappl, and E. Abramof: Hybrid reflections from multiple X-ray scattering in epitaxial bismuth telluride topological insulator films. Appl. Phys. Lett. 112, 101903 (2018).

    Article  CAS  Google Scholar 

  46. S.L. Morelhão, S.W. Kycia, S. Netzke, C.I. Fornari, P.H.O. Rappl, and E. Abramof: Dynamics of defects in van der Waals epitaxy of bismuth telluride topological insulators. J. Phys. Chem. C 123, 24818 (2019).

    Article  CAS  Google Scholar 

  47. E. Weckert and K. Hummer: Multiple-beam X-ray diffraction for physical determination of reflection phases and its applications. Acta Cryst. A 53, 108 (1997).

    Article  Google Scholar 

  48. L.H. Avanci, M.A. Hayashi, L.P. Cardoso, S.L. Morelhão, F. Riesz, K. Rakennus, and T. Hakkarainen: Mapping of Bragg-surface diffraction of InP/GaAs(100) structure. J. Cryst. Growth 188, 220 (1998).

    Article  CAS  Google Scholar 

  49. R.O. Freitas, S.L. Morelhão, L.H. Avanci, and A.A. Quivy: Strain field of InAs QDs on GaAs (001) substrate surface: characterization by synchrotron X-ray Renninger scanning. Microelectron. J. 36, 219 (2005).

    Article  CAS  Google Scholar 

  50. R.O. Freitas, T.E. Lamas, A.A. Quivy, and S.L. Morelhão: Synchrotron X-ray Renninger scanning for studying strain in InAs/GaAs quantum dot system. Phys. Status Solidi A 204, 2548 (2007).

    Article  CAS  Google Scholar 

  51. A.S. de Menezes, A.O. dos Santos, J.M.A. Almeida, J.R.R. Bortoleto, M.A. Cotta, S.L. Morelhão, and L.P. Cardoso: Direct observation of tetragonal distortion in epitaxial structures through secondary peak split in a synchrotron radiation Renninger scan. Cryst. Growth Des. 10, 3426 (2010).

    Article  CAS  Google Scholar 

  52. L.H. Avanci, L.P. Cardoso, S.E. Girdwood, D. Pugh, J.N. Sherwood, and K.J. Roberts: Piezoelectric coefficients of mNA organic nonlinear optical material using synchrotron X-ray multiple diffraction. Phys. Rev. Lett. 81, 5426 (1998).

    Article  CAS  Google Scholar 

  53. S.L. Morelhão: Computer Simulation Tools for X-ray Analysis, 1st ed. (Springer International Publishing, Cham, 2016), pp. 24–44.

    Book  Google Scholar 

  54. J.Z. Domagala, S.L. Morelhão, M. Sarzynski, M. Mazdziarz, P. Dluzewski, and M. Leszczynski: Hybrid reciprocal lattice: application to layer stress determination in GaAlN/GaN(0001) systems with patterned substrates. J. Appl. Cryst. 49, 798 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from Brazilian agencies CAPES (Grant Nos. 88881.119076/2016-01 and 2018-5), FAPESP (Grant Nos. 2018/00303-7, 2019/11564-9, and 2019/15574-9), and CNPq (Grant Nos. 309867/2017-7 and 452287/2019-7), as well as from the NSERC of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sérgio L. Morelhão.

Supplementary Material for

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valério, A., Penacchio, R.F.S., Estradiote, M.B. et al. Phonon scattering mechanism in thermoelectric materials revised via resonant x-ray dynamical diffraction. MRS Communications 10, 265–271 (2020). https://doi.org/10.1557/mrc.2020.37

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2020.37

Navigation