Skip to main content
Log in

Molecular beam epitaxy growth of nonmagnetic Weyl semimetal LaAlGe thin film

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Here, the authors report a detailed method of growing LaAlGe, a nonmagnetic Weyl semimetal, thin film on silicon(100) substrates by molecular beam epitaxy and their structural and electrical characterizations. About 50-nm-thick LaAlGe films were deposited and annealed for 16 h in situ at a temperature of 793 K. As-grown high-quality films showed uniform surface topography and near ideal stoichiometry with a body-centered tetragonal crystal structure. Temperature-dependent longitudinal resistivity can be understood with dominant interband s-d electron-phonon scattering in the temperature range of 5-40 K. Hall measurements confirmed the semimetallic nature of the films with an electron-dominated charge carrier density of ~7.15 × 1021 cm−3 at 5 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1.
Table I.
Figure 2.
Figure 3.

Similar content being viewed by others

References

  1. G. Chang, B. Singh, S.Y. Xu, G. Bian, S.M. Huang, C.H. Hsu, I. Belopolski, N. Alidoust, D.S. Sanchez, H. Zheng, and H. Lu: Magnetic and noncentrosymmetric Weyl fermion semimetals in the R AlGe family of compounds (R = rare earth). Phys. Rev. B 97, 041104 (2018).

    Article  CAS  Google Scholar 

  2. P. Puphal, C. Mielke, N. Kumar, Y. Soh, T. Shang, M. Medarde, J.S. White, and E. Pomjakushina: Bulk single-crystal growth of the theoretically predicted magnetic Weyl semimetals R AlGe (R=Pr, Ce). Phys. Rev. Mater. 3, 024204 (2019).

    Article  CAS  Google Scholar 

  3. S.Y. Xu, N. Alidoust, G. Chang, H. Lu, B. Singh, I. Belopolski, D.S. Sanchez, X. Zhang, G. Bian, H. Zheng, and M.A. Husanu: Discovery of Lorentz-violating type II Weyl fermions in LaAlGe. Sci. Adv. 3, e1603266 (2017).

    Article  Google Scholar 

  4. B. Meng, H. Wu, Y. Qiu, C. Wang, Y. Liu, Z. Xia, S. Yuan, H. Chang, and Z. Tian: Large anomalous Hall effect in ferromagnetic Weyl semimetal candidate PrAlGe. APL Mater. 7, 051110 (2019).

    Article  Google Scholar 

  5. Y. Tokura, M. Kawasaki, and N. Nagaosa: Emergent functions of quantum materials. Nat. Phys. 13, 1056 (2017).

    Article  CAS  Google Scholar 

  6. S.M. Huang, S.Y. Xu, I. Belopolski, C.C. Lee, G. Chang, B. Wang, N. Alidoust, G. Bian, M. Neupane, C. Zhang, and S. Jia: A Weyl Fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class. Nat. Commun. 6, 7373 (2015).

    Article  CAS  Google Scholar 

  7. F. Arute, K. Arya, R. Babbush, D. Bacon, J.C. Bardin, R. Barends, R. Biswas, S. Boixo, F.G. Brandao, D.A. Buell, and B. Burkett: Quantum supremacy using a programmable superconducting processor. Nature 574, 505 (2019).

    Article  CAS  Google Scholar 

  8. A.A. Soluyanov, D. Gresch, Z. Wang, Q. Wu, M. Troyer, X. Dai, and B.A. Bernevig: Type-II Weyl semimetals. Nature 527, 495 (2015).

    Article  CAS  Google Scholar 

  9. B.Q. Lv, H.M. Weng, B.B. Fu, X.P. Wang, H. Miao, J. Ma, P. Richard, X.C. Huang, L.X. Zhao, G.F. Chen, and Z. Fang: Experimental discovery of Weyl semimetal TaAs. Phys. Rev. X 5, 031013 (2015).

    Google Scholar 

  10. S.Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C. Zhang, R. Sankar, G. Chang, Z. Yuan, C.C. Lee, and S.M. Huang: Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 349, 613 (2015).

    Article  CAS  Google Scholar 

  11. J. Wang, B. Lian, and S.C. Zhang: Generation of spin currents by magnetic field in T-and P-broken materials. SPIN 9, 1940013 (2019). doi:10.1142/S2010324719400137

    Article  CAS  Google Scholar 

  12. X. Huang, L. Zhao, Y. Long, P. Wang, D. Chen, Z. Yang, H. Liang, M. Xue, H. Weng, Z. Fang, and X. Dai: Observation of the chiral-anomaly-induced negative magnetoresistance in 3D Weyl semimetal TaAs. Phys. Rev. X 5, 031023 (2015).

    Google Scholar 

  13. D.T. Son and B.Z. Spivak: Chiral anomaly and classical negative magnetoresistance of Weyl metals. Phys. Rev. B 88, 104412 (2013).

    Article  Google Scholar 

  14. X. Wan, A.M. Turner, A. Vishwanath, and S.Y. Savrasov: Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).

    Article  Google Scholar 

  15. R.P. Dulal, B.R. Dahal, A. Forbes, N. Bhattarai, I.L. Pegg, and J. Philip: Weak localization and small anomalous Hall conductivity in ferromagnetic Weyl semimetal Co2TiGe. Sci. Rep. 9, 3342 (2019).

    Article  Google Scholar 

  16. A.M. Guloy and J.D. Corbett: Syntheses and structures of lanthanum germanide, LaGe2-x, and lanthanum aluminum germanide, LaAlGe: interrelationships among the alpha-ThSi2, alpha-GdSi2, and LaPtSi structure types. Inorg. Chem. 30, 4789 (1991).

    Article  CAS  Google Scholar 

  17. H. Hodovanets, C.J. Eckberg, P.Y. Zavalij, H. Kim, W.C. Lin, M. Zic, D.J. Campbell, J.S. Higgins, and J. Paglione: Single-crystal investigation of the proposed type-II Weyl semimetal CeAlGe. Phys. Rev. B 98, 245132 (2018).

    Article  CAS  Google Scholar 

  18. M. Ohring: Why are thin films different from the bulk? In Proc. SPIE 2114, Laser-Induced Damage in Optical Materials: 1993 (28 July 1994); https://doi.org/10.1117/12.180875.

    Google Scholar 

  19. K. Momma, and F. Izumi: VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272 (2011).

    Article  CAS  Google Scholar 

  20. A.W. Forbes, R.P. Dulal, N. Bhattarai, I.L. Pegg, and J. Philip: Experimental realization and magnetotransport properties of half-metallic Fe2Si. J. Appl. Phys. 125, 243902 (2019).

    Article  Google Scholar 

  21. N. Bhattarai, A.W. Forbes, R.P. Dulal, I.L. Pegg, and J. Philip: Transport characteristics of type II Weyl semimetal MoTe2 thin films grown by chemical vapor deposition. J. Mater. Res. 35, 454 (2020).

    Article  CAS  Google Scholar 

  22. B. Chen, X. Duan, H. Wang, J. Du, Y. Zhou, C. Xu, Y. Zhang, L. Zhang, M. Wei, Z. Xia, and C. Cao: Large magnetoresistance and superconductivity in a-gallium single crystals. npj Quantum Mater. 3, 40 (2018).

    Article  Google Scholar 

  23. J.M. Ziman: Electrons and Phonons, Classics Series (Oxford University Press, Oxford, 2011)

    Google Scholar 

  24. X. Zhang, Z. Xiao, H. Lei, Y. Toda, S. Matsuishi, T. Kamiya, S. Ueda, and H. Hosono: Two-dimensional transition-metal electride Y2C. Chem. Mater. 26, 6638 (2014).

    Article  CAS  Google Scholar 

  25. D. Destraz, L. Das, S.S. Tsirkin, Y. Xu, T. Neupert, J. Chang, A. Schilling, A.G. Grushin, J. Kohlbrecher, L. Keller, and P. Puphal: Magnetism and anomalous transport in the Weyl semimetal PrAlGe: possible route to axial gauge fields. npj Quantum Mater. 5, 1 (2020).

    Article  Google Scholar 

  26. S. Sun, Q. Wang, P.J. Guo, K. Liu, and H. Lei: Large magnetoresistance in LaBi: origin of field-induced resistivity upturn and plateau in compensated semimetals. New J. Phys. 18, 082002 (2016).

    Article  Google Scholar 

  27. F.F. Tafti, Q.D. Gibson, S.K. Kushwaha, N. Haldolaarachchige, and R.J. Cava: Resistivity plateau and extreme magnetoresistance in LaSb. Nat. Phys. 12, 272 (2016).

    Article  CAS  Google Scholar 

  28. S. Arajs, and R.V. Colvin: Electrical resistivity due to electron-phonon scattering in yttrium and lutetium. J. Less-Common Met. 4, 572 (1962).

    Article  CAS  Google Scholar 

  29. D. Destraz, K. Ilin, M. Siegel, A. Schilling, and J. Chang: Superconducting fluctuations in a Destrazthin NbN film probed by the Hall effect. Phys. Rev. B 95, 224501 (2017).

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank The Vitreous State Laboratory for its financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niraj Bhattarai.

Supplementary material

Supplementary material

The supplementary material for this article can be found at {rs|https://doi.org/10.1557/mrc.2020.28|url|}.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattarai, N., Forbes, A.W., Dulal, R.P. et al. Molecular beam epitaxy growth of nonmagnetic Weyl semimetal LaAlGe thin film. MRS Communications 10, 272–277 (2020). https://doi.org/10.1557/mrc.2020.28

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2020.28

Navigation