Skip to main content
Log in

Molecular Au(I) complexes in the photosensitized photocatalytic CO2 reduction reaction

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Five Au complexes are evaluated for the reduction reaction of CO2 via cyclic voltammetry and in a photocatalytic system. Electrochemically, the complexes were all evaluated for pre-association with CO2 prior to electrochemical reduction and for thermodynamic favorability for CO2 reduction in photocatalytic systems. The complexes were evaluated in photocatalytic reactions using an Ir-based photosensitizer and a sacrificial electron donor for the conversion of CO2 to CO. Au-complex counterion effects on the photocatalytic reaction were analyzed by varying weakly coordinating counterions with significant performance changes noted. At low Au-complex concentrations, a high TON value of 700 was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1.
Figure 2.
Table 1.
Figure 3.

Similar content being viewed by others

References

  1. V.R. Jupally, A.C. Dharmaratne, D. Crasto, A.J. Huckaba, C. Kumara, P.R. Nimmala, N. Kothalawala, J.H. Delcamp, and A. Dass: Au137(SR)56 nanomolecules: composition, optical spectroscopy, electrochemistry and electrocatalytic reduction of CO2. Chem. Commun. 50, 9895 (2014).

    Article  CAS  Google Scholar 

  2. D.R. Kauffman, D. Alfonso, C. Matranga, H. Qian, and R. Jin: Experimental and computational investigation of Au25 clusters and CO2: a unique interaction and enhanced electrocatalytic activity. J. Am. Chem. Soc. 134, 10237 (2012).

    Article  CAS  Google Scholar 

  3. Y. Chen, C.W. Li, and M.W. Kanan: Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles. J. Am. Chem. Soc. 134, 19969 (2012).

    Article  CAS  Google Scholar 

  4. K. Sun, T. Cheng, L. Wu, Y. Hu, J. Zhou, A. Maclennan, Z. Jiang, Y. Gao, W.A. Goddard 3rd, and Z. Wang: Ultrahigh mass activity for carbon dioxide reduction enabled by gold-iron core-shell nanoparticles. J. Am. Chem. Soc. 139, 15608 (2017).

    Article  CAS  Google Scholar 

  5. H. Kim, H.S. Park, Y.J. Hwang, and B.K. Min: Surface-morphology-dependent electrolyte effects on gold-catalyzed electrochemical CO2 reduction. J. Phys. Chem. C 121, 22637 (2017).

    Article  CAS  Google Scholar 

  6. A.J. Huckaba, E.A. Sharpe, and J.H. Delcamp: Photocatalytic reduction of CO2 with Re-Pyridyl-NHCs. Inorg. Chem. 55, 682 (2016).

    Article  CAS  Google Scholar 

  7. J.D. Cope, N.P. Liyanage, P.J. Kelley, J.A. Denny, E.J. Valente, C.E. Webster, J.H. Delcamp, and T.K. Hollis: Electrocatalytic reduction of CO2 with CCC-NHC pincer nickel complexes. Chem. Commun. 53, 9442 (2017).

    Article  CAS  Google Scholar 

  8. S. Das, R.R. Rodrigues, R.W. Lamb, F. Qu, E. Reinheimer, C.M. Boudreaux, C.E. Webster, J.H. Delcamp, and E.T. Papish: Highly active ruthenium CNC pincer photocatalysts for visible-light-driven carbon dioxide reduction. Inorg. Chem. 58, 8012 (2019).

    Article  Google Scholar 

  9. R.R. Rodrigues, C.M. Boudreaux, E.T. Papish, and J.H. Delcamp: Photocatalytic reduction of CO2 to CO and formate: do reaction conditions or ruthenium catalysts control product selectivity?ACS Appl. Energy Mater. 2, 37 (2019).

    Article  CAS  Google Scholar 

  10. N.P. Liyanage, H.A. Dulaney, A.J. Huckaba, J.W. Jurss, and J.H. Delcamp: Electrocatalytic reduction of CO2 to CO with Re-Pyridyl-NHCs: proton source influence on rates and product selectivities. Inorg. Chem. 55, 6085 (2016).

    Article  CAS  Google Scholar 

  11. M.H. Schmidt, G.M. Miskelly, and N.S. Lewis: Effects of redox potential, steric configuration, solvent, and alkali metal cations on the binding of carbon dioxide to cobalt(I) and nickel(I) macrocycles. J. Am. Chem. Soc. 112, 3420 (1990).

    Article  CAS  Google Scholar 

  12. J. Agarwal, T.W. Shaw, C.J. Stanton 3rd, G.F. Majetich, A.B. Bocarsly, and H.F. Schaefer 3rd: NHC-containing manganese(I) electrocatalysts for the two-electron reduction of CO2. Angew. Chem. Int. Ed. 53, 5152 (2014).

    Article  CAS  Google Scholar 

  13. T. Jin, D. He, W. Li, C.J. Stanton, S.A. Pantovich, G.F. Majetich, H.F. Schaefer, J. Agarwal, D. Wang, and G. Li: CO2 reduction with Re(I)-NHC compounds: driving selective catalysis with a silicon nanowire photoelectrode. Chem. Commun. 52, 14258 (2016).

    Article  CAS  Google Scholar 

  14. C.J. Stanton 3rd, C.W. Machan, J.E. Vandezande, T. Jin, G.F. Majetich, H.F. Schaefer 3rd, C.P. Kubiak, G. Li, and J. Agarwal: Re(I) NHC complexes for electrocatalytic conversion of CO2. Inorg. Chem. 55, 3136 (2016).

    Article  CAS  Google Scholar 

  15. C.J. Stanton 3rd, J.E. Vandezande, G.F. Majetich, H.F. Schaefer 3rd, and J. Agarwal: Mn-NHC electrocatalysts: increasing p acidity lowers the reduction potential and increases the turnover frequency for CO2 reduction. Inorg. Chem. 55, 9509 (2016).

    Article  CAS  Google Scholar 

  16. C.A. Carpenter, P. Brogdon, L.E. McNamara, G.S. Tschumper, N.I. Hammer, and J.H. Delcamp: A robust pyridyl-NHC-ligated rhenium photocatalyst for CO2 reduction in the presence of water and oxygen. Inorganics 6, 22 (2018).

    Article  Google Scholar 

  17. Y. Kuramochi, O. Ishitani, and H. Ishida: Reaction mechanisms of catalytic photochemical CO2 reduction using Re(I) and Ru(II) complexes. Coord. Chem. Rev. 373, 333 (2018).

    Article  CAS  Google Scholar 

  18. N.P. Liyanage, W. Yang, S. Guertin, S. Sinha Roy, C.A. Carpenter, R.E. Adams, R.H. Schmehl, J.H. Delcamp, and J.W. Jurss: Photochemical CO2 reduction with mononuclear and dinuclear rhenium catalysts bearing a pendant anthracene chromophore. Chem. Commun. 55, 993 (2019).

    Article  CAS  Google Scholar 

  19. J. Bonin, M. Robert, and M. Routier: Selective and efficient photocatalytic CO2 reduction to CO using visible light and an iron-based homogeneous catalyst. J. Am. Chem. Soc. 136, 16768 (2014).

    Article  CAS  Google Scholar 

  20. J.A. Widegren, and R.G. Finke: A review of the problem of distinguishing true homogeneous catalysis from soluble or other metal-particle heterogeneous catalysis under reducing conditions. J. Mol. Cat. A: Chem. 198, 317 (2003).

    Article  CAS  Google Scholar 

  21. H. Shirley, X. Su, H. Sanjanwala, K. Talukdar, J.W. Jurss, and J.H. Delcamp: Durable solar-powered systems with Ni-catalysts for conversion of CO2 or CO to CH4. J. Am. Chem. Soc. 141, 6617 (2019).

    Article  CAS  Google Scholar 

  22. V.S. Thoi, N. Kornienko, C.G. Margarit, P. Yang, and C.J. Chang: Visible-light photoredox catalysis: selective reduction of carbon dioxide to carbon monoxide by a nickel N-heterocyclic carbene-isoquinoline complex. J. Am. Chem. Soc. 135, 14413 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge NSF award OIA-1632825 for funding this research. J.T. acknowledges traineeship support from the NSF NRT program “Interface” (DGE 1449999) through the University of Southern Mississippi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jared H. Delcamp.

Supporting Information

Supplementary Material

Supplementary Material

The supplementary material for this article can be found at {rs|https://doi.org/10.1557/mrc.2020.21|url|}.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davis, S., Nugegoda, D., Tropp, J. et al. Molecular Au(I) complexes in the photosensitized photocatalytic CO2 reduction reaction. MRS Communications 10, 252–258 (2020). https://doi.org/10.1557/mrc.2020.21

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2020.21

Navigation