Skip to main content
Log in

Phase separation and transformation of binary immiscible systems in molten core-derived optical fibers

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

This work studies phase-separated fibers in the CaO-SiO2 and NiO-SiO2 systems. The nature of the phase-separated microstructures and underlying phase equilibria are discussed, including dimensionality, composition, and phase formation as well as the realization of ferrimagnetic behavior in the NiO-SiO2 fibers based on the formation of metallic Ni inclusions. In addition to understanding the composition/processing relationships in these systems, the work represents a step forward toward novel magneto-optic fibers. It is important to understand the underlying materials science in order to advance the properties of novel optical fibers possessing engineered heterogeneities in the core.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. A.C. Peacock, U.J. Gibson, and J. Ballato: Silicon optical fibres—past, present, and future. Adv. Phys.-X 1, 114–127 (2016).

    CAS  Google Scholar 

  2. B. Faugas, T. Hawkins, C. Kucera, K. Bohnert, and J. Ballato: Molten core fabrication of bismuth germanium oxide Bi4Ge3O12 crystalline core fibers. J. Am. Ceram. Soc. 101, 4340–4349 (2018).

    Article  CAS  Google Scholar 

  3. A.F. Abouraddy, M. Bayindir, G. Benoit, S.D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink: Towards multimaterial multifunctional fibres that see, hear, sense and communicate. Nat. Mater. 6, 336–347 (2007).

    Article  CAS  Google Scholar 

  4. H. Orelma, A. Hokkanen, I. Leppanen, K. Kammiovirta, M. Kapulainen, and A. Harlin: Optical cellulose fiber made from regenerated cellulose and cellulose acetate for water sensor applications. Cellulose 27, 1543–1553 (2019).

    Article  Google Scholar 

  5. A. Veber, Z. Lu, M. Vermillac, F. Pigeonneau, W. Blanc, and L. Petit: Nano-structured optical fibers made of glass-ceramics, and phase separated and metallic particle-containing glasses. Fibers 7, 1–29 (2019).

    Article  Google Scholar 

  6. J.C. Knight, T.A. Birks, P.S.J. Russell, and D.M. Atkin: All-silica single-mode optical fiber with photonic crystal cladding. Opt. Lett. 12, 1547–1549 (1996).

    Article  Google Scholar 

  7. A. Mafi, M. Tuggle, C. Bassett, E. Mobini, and J. Ballato: Advances in the fabrication of disordered transverse Anderson localizing optical fibers. Opt. Mater. Express 9, 2769–2774 (2019).

    Article  CAS  Google Scholar 

  8. T.A. Birks, J.C. Knight, and P. St. J. Russell: Endlessly single-mode photonic crystal fiber. Opt. Lett. 22, 961–963 (1997).

    Article  CAS  Google Scholar 

  9. S. Karbasi, R.J. Frazier, K.W. Koch, T. Hawkins, J. Ballato, and A. Mafi: Image transport through a disordered optical fibre mediated by transverse Anderson localization. Nat. Commun. 5, 3362 (2014).

    Article  Google Scholar 

  10. A. Issatayeva, A. Beisenova, S. Sovetov, S. Korganbayev, M. Jelbuldina, Z. Ashikbayeva, W. Blanc, E. Schena, S. Sales, C. Molardi, and D. Tosi: Multiplexing of distributed temperature sensing achieved by nanoparticle-doped fibers. Proc. SPIE 11190, 111900H, 2019.

    Google Scholar 

  11. A. Beisenova, A. Issatayeva, I. Iordachita, W. Blanc, C. Molardi, and D. Tosi: Distributed fiber optics 3D shape sensing by means of high scattering NP-doped fibers simultaneous spatial multiplexing. Opt. Express 27, 22074–22087 (2019).

    Article  CAS  Google Scholar 

  12. M. Cavillon, P. Dragic, B. Greenberg, S.H. Garofalini, and J. Ballato: Observation and practical implications of nano-scale phase separation in aluminosilicate glass optical fibers. J. Am. Ceram. Soc. 102, 879–883 (2019).

    CAS  Google Scholar 

  13. J. Ballato, H. Ebendorff-Heidepriem, M. Paul, and L. Petit: Optical fiber materials: feature introduction. Opt. Mater. Express 9, 3565–3566 (2019).

    Article  CAS  Google Scholar 

  14. M. Cavillon: Molten core fabrication of intrinsically low nonlinearity glass optical fibers. Ph.D. Dissertation, Department of Material Science and Engineering, Clemson University, Clemson, SC, 2018.

    Google Scholar 

  15. J. Hammel and J. Mackenzie; Method of forming microporous glass fibers. U.S. Patent No. 3,650,721, 1972.

    Google Scholar 

  16. J. Kerwawycz and M. Tomozawa: Light scattering from phase-separated glass. J. Am. Ceram. Soc. 57, 467–470 (1974).

    Article  CAS  Google Scholar 

  17. T. Takamori and M. Tomozawa: Viscosity and microstructure of phase-separate borosilicate glasses. J. Am. Ceram. Soc. 62, 373–377 (1979).

    Article  CAS  Google Scholar 

  18. M. Tomozawa and T. Takamori: Effect of phase separation on HF etch rate of borosilicate glasses. J. Am. Ceram. Soc. 60, 301–304 (1977).

    Article  CAS  Google Scholar 

  19. J. Ballato and A.C. Peacock: Perspective: molten core optical fiber fabrication—a route to new materials and applications. APL Photonics 3, 120903 (2018).

    Article  Google Scholar 

  20. M. Cavillon, P. Dragic, B. Faugas, T.W. Hawkins, and J. Ballato: Insights and aspects to the modeling of the molten core method for optical fiber fabrication. Materials 12, 2898 (2019).

    Article  CAS  Google Scholar 

  21. S. Kim and T. Sanders: Thermodynamic modeling of the miscibility gaps and the metastable liquid in the MgO–SiO2, CaO–SiO2, and SrO–SiO2 systems. J. Am. Ceram. Soc. 82, 1901–1907 (1999).

    Article  CAS  Google Scholar 

  22. T. Seward: Elongation and spheroidization of phase-separated particles in glass. J. Non-Cryst. Solids 15, 487–504 (1974).

    Article  CAS  Google Scholar 

  23. T. Seward: Some unusual optical properties of elongated phases in glass. The Physics of Non-Crystalline Solids: 4th International Conference, 342–347 (1977).

    Google Scholar 

  24. C. Harman and B. King: Applications of nickel compounds in ceramics. Ind. Eng. Chem. 44, 1015–1017 (1952).

    Article  CAS  Google Scholar 

  25. NiO–SiO2: Data from TDnucl–Thermodata nuclear database. Available at: http://www.crct.polymtl.ca/fact/phase_diagram.php?file=NiO-SiO2.jpg&dir=TDnucl.

  26. J.E. Oliveira, R.N. Correia, and M.H.V. Fernandes: Formation of convoluted silica precipitates during amorphous phase separation in the Ca3(PO4)2–SiO2–MgO system. J. Am. Ceram. Soc. 83, 1296–1298 (2000).

    Article  CAS  Google Scholar 

  27. H.J.T. Ellingham: Reducibility of oxides and sulphides in metallurgical processes. J. Soc. Chem. Ind. 63, 125–160 (1944).

    Article  CAS  Google Scholar 

  28. H. Kondo and S. Miyahara: Magnetic properties of several orthosilicates with olivine structures. J. Phys. Soc. Jpn 21, 2193–2196 (1966).

    Article  CAS  Google Scholar 

  29. B.D. Cullity and C.D. Graham: Introduction to Magnetic Materials. 2nd ed. (John Wiley & Sons, Inc. Hoboken, NJ, 2009).

    Google Scholar 

Download references

Acknowledgments

The authors thank Zichun (Tony) Yan for discussions regarding the magnetic phases, Donald Mulwee for electron microscopy support, and George Wetzel for operating the FIB. Financial support from the J. E. Sirrine Foundation is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Ballato.

Supplementary Material

Supplementary Material

The supplementary material for this article can be found at https://doi.org/10.1557/mrc.2020.20.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuggle, M., Hawkins, T.W., Kucera, C. et al. Phase separation and transformation of binary immiscible systems in molten core-derived optical fibers. MRS Communications 10, 298–304 (2020). https://doi.org/10.1557/mrc.2020.20

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2020.20

Navigation