Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-19T23:41:41.472Z Has data issue: false hasContentIssue false

INNER AMENABLE GROUPOIDS AND CENTRAL SEQUENCES

Published online by Cambridge University Press:  26 May 2020

YOSHIKATA KIDA
Affiliation:
Graduate School of Mathematical Sciences, The University of Tokyo, Komaba,Tokyo153-8914, Japan; kida@ms.u-tokyo.ac.jp
ROBIN TUCKER-DROB
Affiliation:
Department of Mathematics, Texas A&M University, College Station, TX 77843, USA; rtuckerd@math.tamu.edu

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We introduce inner amenability for discrete probability-measure-preserving (p.m.p.) groupoids and investigate its basic properties, examples, and the connection with central sequences in the full group of the groupoid or central sequences in the von Neumann algebra associated with the groupoid. Among other things, we show that every free ergodic p.m.p. compact action of an inner amenable group gives rise to an inner amenable orbit equivalence relation. We also obtain an analogous result for compact extensions of equivalence relations that either are stable or have a nontrivial central sequence in their full group.

Type
Analysis
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s) 2020

References

Anantharaman-Delaroche, C. and Renault, J., Amenable Groupoids, Monogr. Enseign. Math., vol. 36 (L’Enseignement Mathématique, Geneva, 2000).Google Scholar
Becker, H. and Kechris, A. S., The Descriptive Set Theory of Polish Group Actions, London Math. Soc. Lecture Note Ser., vol. 232 (Cambridge University Press, Cambridge, 1996).CrossRefGoogle Scholar
de Canniere, J. and Haagerup, U., ‘Multipliers of the Fourier algebras of some simple Lie groups and their discrete subgroups’, Amer. J. Math. 107(1985) 455500.CrossRefGoogle Scholar
Choda, M., ‘Inner amenability and fullness’, Proc. Amer. Math. Soc. 86(1982) 663666.CrossRefGoogle Scholar
Connes, A., ‘Almost periodic states and factors of type III1’, J. Funct. Anal. 16(1974) 415445.CrossRefGoogle Scholar
Connes, A., Feldman, J. and Weiss, B., ‘An amenable equivalence relation is generated by a single transformation’, Ergodic Theory Dynam. Systems 1(1981) 431450.CrossRefGoogle Scholar
Connes, A. and Jones, V. F. R., ‘A II1 factor with two nonconjugate Cartan subalgebras’, Bull. Amer. Math. Soc. (N.S.) 6(1982) 211212.CrossRefGoogle Scholar
Connes, A. and Krieger, W., ‘Measure space automorphisms, the normalizers of their full groups, and approximate finiteness’, J. Funct. Anal. 24(1977) 336352.CrossRefGoogle Scholar
de Cornulier, Y., ‘Finitely presentable, non-Hopfian groups with Kazhdan’s property (T) and infinite outer automorphism group’, Proc. Amer. Math. Soc. 135(2007) 951959.CrossRefGoogle Scholar
Deprez, T. and Vaes, S., ‘Inner amenability, property Gamma, McDuff II1 factors and stable equivalence relations’, Ergodic Theory Dynam. Systems 38(2018) 26182624.CrossRefGoogle Scholar
Effros, E. G., ‘Property 𝛤 and inner amenability’, Proc. Amer. Math. Soc. 47(1975) 483486.Google Scholar
Ershov, M., ‘Kazhdan groups whose FC-radical is not virtually abelian’, J. Comb. Algebra 1(2017) 5962.CrossRefGoogle Scholar
Feldman, J., Sutherland, C. E. and Zimmer, R. J., ‘Subrelations of ergodic equivalence relations’, Ergodic Theory Dynam. Systems 9(1989) 239269.CrossRefGoogle Scholar
Fell, J. M. G., ‘Weak containment and induced representations of groups’, Canad. J. Math. 14(1962) 237268.CrossRefGoogle Scholar
Giordano, T. and de la Harpe, P., ‘Groupes de tresses et moyennabilité intérieure’, Ark. Mat. 29(1991) 6372.CrossRefGoogle Scholar
Giordano, T. and Pestov, V., ‘Some extremely amenable groups related to operator algebras and ergodic theory’, J. Inst. Math. Jussieu 6(2007) 279315.CrossRefGoogle Scholar
Glasner, E., Ergodic Theory via Joinings, Math. Surveys Monogr., vol. 101 (American Mathematical Society, Providence, RI, 2003).CrossRefGoogle Scholar
Glasner, Y. and Monod, N., ‘Amenable actions, free products and a fixed point property’, Bull. Lond. Math. Soc. 39(2007) 138150.CrossRefGoogle Scholar
Hahn, P., ‘The regular representations of measure groupoids’, Trans. Amer. Math. Soc. 242(1978) 3572.CrossRefGoogle Scholar
Hall, P., ‘Finiteness conditions for soluble groups’, Proc. Lond. Math. Soc. (3) 4(1954) 419436.Google Scholar
Hamachi, T., ‘Canonical subrelations of ergodic equivalence relations-subrelations’, J. Operator Theory 43(2000) 334.Google Scholar
Ioana, A., ‘A relative version of Connes’ 𝜒(M) invariant and existence of orbit inequivalent actions’, Ergodic Theory Dynam. Systems 27(2007) 11991213.CrossRefGoogle Scholar
Ioana, A. and Spaas, P., ‘A class of II1 factors with a unique McDuff decomposition’, Math. Ann., to appear. Preprint. arXiv:1808:02965.Google Scholar
Jones, V. F. R., ‘A converse to Ocneanu’s theorem’, J. Operator Theory 10(1983) 6163.Google Scholar
Jones, V. F. R. and Schmidt, K., ‘Asymptotically invariant sequences and approximate finiteness’, Amer. J. Math. 109(1987) 91114.CrossRefGoogle Scholar
Kechris, A. S., Classical Descriptive Set Theory, Grad. Texts in Math., vol. 156 (Springer, New York, 1995).CrossRefGoogle Scholar
Kechris, A. S., Global Aspects of Ergodic Group Actions, Math. Surveys Monogr., vol. 160 (American Mathematical Society, Providence, RI, 2010).CrossRefGoogle Scholar
Kerr, D. and Li, H., Ergodic Theory. Independence and Dichotomies, Springer Monogr. Math. (Springer, Cham, 2016).CrossRefGoogle Scholar
Kida, Y., ‘Inner amenable groups having no stable action’, Geom. Dedicata 173(2014) 185192.CrossRefGoogle Scholar
Kida, Y., ‘Stability in orbit equivalence for Baumslag-Solitar groups and Vaes groups’, Groups Geom. Dyn. 9(2015) 203235.CrossRefGoogle Scholar
Kida, Y., ‘Stable actions of central extensions and relative property (T)’, Israel J. Math. 207(2015) 925959.CrossRefGoogle Scholar
Kida, Y., ‘Stable actions and central extensions’, Math. Ann. 369(2017) 705722.CrossRefGoogle Scholar
Marrakchi, A., ‘Stability of products of equivalence relations’, Compos. Math. 154(2018) 20052019.CrossRefGoogle Scholar
Pimsner, M. and Popa, S., ‘Entropy and index for subfactors’, Ann. Sci. Éc. Norm. Supér. (4) 19(1986) 57106.CrossRefGoogle Scholar
Popa, S. and Vaes, S., ‘On the fundamental group of II1 factors and equivalence relations arising from group actions’, inQuanta of Maths, Clay Math. Proc., vol. 11 (American Mathematical Society, Providence, RI, 2010), 519541.Google Scholar
Schmidt, K., ‘Asymptotically invariant sequences and an action of SL(2, Z) on the 2-sphere’, Israel J. Math. 37(1980) 193208.CrossRefGoogle Scholar
Schmidt, K., ‘Asymptotic properties of unitary representations and mixing’, Proc. Lond. Math. Soc. (3) 48(1984) 445460.Google Scholar
Schmidt, K., ‘Some solved and unsolved problems concerning orbit equivalence of countable group actions’, inProceedings of the Conference on Ergodic Theory and Related Topics, II (Georgenthal 1986), Teubner-Texte Math., vol. 94 (Teubner, Leipzig, 1987), 171184.Google Scholar
Sinclair, A. M. and Smith, R. R., Finite von Neumann Algebras and Masas, London Math. Soc. Lecture Note Ser., vol. 351 (Cambridge University Press, Cambridge, 2008).CrossRefGoogle Scholar
Sutherland, C. E., ‘Subfactors and ergodic theory’, inCurrent Topics in Operator Algebras (Nara 1990) (World Sci. Publ, River Edge, NJ, 1991), 3842.Google Scholar
Tucker-Drob, R., ‘Invariant means and the structure of inner amenable groups’, Duke Math. J., to appear. Preprint. arXiv:1407:7474.Google Scholar
Vaes, S., ‘An inner amenable group whose von Neumann algebra does not have property Gamma’, Acta Math. 208(2012) 389394.CrossRefGoogle Scholar
Wright, F. B., ‘A reduction for algebras of finite type’, Ann. of Math. (2) 60(1954) 560570.CrossRefGoogle Scholar
Zimmer, R. J., ‘Extensions of ergodic group actions’, Illinois J. Math. 20(1976) 373409.CrossRefGoogle Scholar