Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cytokines that target immune killer cells against tumors

Abstract

T-cell-stimulating cytokines have shown promise as monotherapies or in combination with other therapeutic modalities for immunotherapy of cancer. However, their efficacy is limited due to their short half-life, pleiotropic roles, and induction of severe toxicity even at therapeutic doses. To overcome these major therapeutic barriers, cytokine-based products are being further developed to improve their therapeutic index. These approaches include manipulating their activity to preferentially bind to effector immune cells rather than immune-suppressive cells, prolonging their half-life in vivo and modifying them to target tumors. This review focuses on IL-2, IL-15, and IL-10, which have potent effects on immune cells that mediate effective antitumor responses. We will summarize the recent progress of these cytokines in both preclinical studies and selective clinical applications and will discuss our perspectives on the development of new strategies to potentiate cytokine-based immunotherapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

Similar content being viewed by others

References

  1. Robb, R. J. & Smith, K. A. Heterogeneity of human T-cell growth factor(s) due to variable glycosylation. Mol. Immunol. 18, 1087–1094 (1981).

    CAS  PubMed  Google Scholar 

  2. Taniguchi, T. et al. Structure and expression of a cloned cDNA for human interleukin-2. Nature 302, 305–310 (1983).

    CAS  PubMed  Google Scholar 

  3. Taniguchi, T. & Minami, Y. The IL-2/IL-2 receptor system: a current overview. Cell 73, 5–8 (1993).

    CAS  PubMed  Google Scholar 

  4. Malek, T. R. The biology of interleukin-2. Annu. Rev. Immunol. 26, 453–479 (2008).

    CAS  PubMed  Google Scholar 

  5. Zhou, L. et al. Innate lymphoid cells support regulatory T cells in the intestine through interleukin-2. Nature 568, 405–409 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Liao, W., Lin, J. X. & Leonard, W. J. IL-2 family cytokines: new insights into the complex roles of IL-2 as a broad regulator of T helper cell differentiation. Curr. Opin. Immunol. 23, 598–604 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Liao, W., Lin, J. X., Wang, L., Li, P. & Leonard, W. J. Modulation of cytokine receptors by IL-2 broadly regulates differentiation into helper T cell lineages. Nat. Immunol. 12, 551–559 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Fontenot, J. D., Rasmussen, J. P., Gavin, M. A. & Rudensky, A. Y. A function for interleukin 2 in Foxp3-expressing regulatory T cells. Nat. Immunol. 6, 1142–1151 (2005).

    CAS  PubMed  Google Scholar 

  9. D’Cruz, L. M. & Klein, L. Development and function of agonist-induced CD25+Foxp3+ regulatory T cells in the absence of interleukin 2 signaling. Nat. Immunol. 6, 1152–1159 (2005).

    PubMed  Google Scholar 

  10. Maloy, K. J. & Powrie, F. Fueling regulation: IL-2 keeps CD4+ Treg cells fit. Nat. Immunol. 6, 1071–1072 (2005).

    CAS  PubMed  Google Scholar 

  11. Rosenberg, S. A. et al. Experience with the use of high-dose interleukin-2 in the treatment of 652 cancer patients. Ann. Surg. 210, 474–484 (1989). discussion 484–475.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Fyfe, G. et al. Results of treatment of 255 patients with metastatic renal cell carcinoma who received high-dose recombinant interleukin-2 therapy. J. Clin. Oncol. 13, 688–696 (1995).

    CAS  PubMed  Google Scholar 

  13. Atkins, M. B. et al. High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J. Clin. Oncol. 17, 2105–2116 (1999).

    CAS  PubMed  Google Scholar 

  14. Alva, A. et al. Contemporary experience with high-dose interleukin-2 therapy and impact on survival in patients with metastatic melanoma and metastatic renal cell carcinoma. Cancer Immunol. Immunother. 65, 1533–1544 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Boyman, O., Surh, C. D. & Sprent, J. Potential use of IL-2/anti-IL-2 antibody immune complexes for the treatment of cancer and autoimmune disease. Expert Opin. Biol. Ther. 6, 1323–1331 (2006).

    CAS  PubMed  Google Scholar 

  16. Krieg, C., Letourneau, S., Pantaleo, G. & Boyman, O. Improved IL-2 immunotherapy by selective stimulation of IL-2 receptors on lymphocytes and endothelial cells. Proc. Natl Acad. Sci. USA 107, 11906–11911 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Caudana, P. et al. IL2/Anti-IL2 complex combined with CTLA-4, But Not PD-1, blockade rescues antitumor NK cell function by regulatory T-cell modulation. Cancer Immunol. Res. 7, 443–457 (2019).

    PubMed  Google Scholar 

  18. Levin, A. M. et al. Exploiting a natural conformational switch to engineer an interleukin-2 ‘superkine’. Nature 484, 529–533 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Charych, D. H. et al. NKTR-214, an engineered cytokine with biased IL2 receptor binding, increased tumor exposure, and marked efficacy in mouse tumor models. Clin. Cancer Res. 22, 680–690 (2016).

    CAS  PubMed  Google Scholar 

  20. Sharma, M. et al. Bempegaldesleukin selectively depletes intratumoral Tregs and potentiates T cell-mediated cancer therapy. Nat. Commun. 11, 661 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Parisi, G. et al. Persistence of adoptively transferred T cells with a kinetically engineered IL-2 receptor agonist. Nat. Commun. 11, 660 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Marin-Acevedo, J. A., Soyano, A. E., Dholaria, B., Knutson, K. L. & Lou, Y. Cancer immunotherapy beyond immune checkpoint inhibitors. J. Hematol. Oncol. 11, 8 (2018).

    PubMed  PubMed Central  Google Scholar 

  23. Pol, J. G., Caudana, P., Paillet, J., Piaggio, E. & Kroemer, G. Effects of interleukin-2 in immunostimulation and immunosuppression. J. Exp. Med. 217, https://doi.org/10.1084/jem.20191247 (2020).

  24. Zhu, E. F. et al. Synergistic innate and adaptive immune response to combination immunotherapy with anti-tumor antigen antibodies and extended serum half-life IL-2. Cancer Cell 27, 489–501 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Becker, J. C., Varki, N., Gillies, S. D., Furukawa, K. & Reisfeld, R. A. An antibody-interleukin 2 fusion protein overcomes tumor heterogeneity by induction of a cellular immune response. Proc. Natl Acad. Sci. USA 93, 7826–7831 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Du, Y. J. et al. Stability of the recombinant antierbB2 scFvFcinterleukin2 fusion protein and its inhibition of HER2overexpressing tumor cells. Int J. Oncol. 42, 507–516 (2013).

    CAS  PubMed  Google Scholar 

  27. Gutbrodt, K. L. et al. Antibody-based delivery of interleukin-2 to neovasculature has potent activity against acute myeloid leukemia. Sci. Transl. Med. 5, 201ra118 (2013).

    PubMed  Google Scholar 

  28. Gutbrodt, K. L., Casi, G. & Neri, D. Antibody-based delivery of IL2 and cytotoxics eradicates tumors in immunocompetent mice. Mol. Cancer Ther. 13, 1772–1776 (2014).

    CAS  PubMed  Google Scholar 

  29. Gillies, S. D. et al. A low-toxicity IL-2-based immunocytokine retains antitumor activity despite its high degree of IL-2 receptor selectivity. Clin. Cancer Res. 17, 3673–3685 (2011).

    CAS  PubMed  Google Scholar 

  30. Sun, Z. et al. A next-generation tumor-targeting IL-2 preferentially promotes tumor-infiltrating CD8(+) T-cell response and effective tumor control. Nat. Commun. 10, 3874 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Mott, H. R. et al. The solution structure of the F42A mutant of human interleukin 2. J. Mol. Biol. 247, 979–994 (1995).

    CAS  PubMed  Google Scholar 

  32. Bamford, R. N., Battiata, A. P. & Waldmann, T. A. IL-15: the role of translational regulation in their expression. J. Leukoc. Biol. 59, 476–480 (1996).

    CAS  PubMed  Google Scholar 

  33. Waldmann, T. A., Miljkovic, M. D. & Conlon, K. C. Interleukin-15 (dys)regulation of lymphoid homeostasis: implications for therapy of autoimmunity and cancer. J. Exp. Med. 217, https://doi.org/10.1084/jem.20191062 (2020).

  34. Dubois, S., Patel, H. J., Zhang, M., Waldmann, T. A. & Muller, J. R. Preassociation of IL-15 with IL-15R alpha-IgG1-Fc enhances its activity on proliferation of NK and CD8+/CD44high T cells and its antitumor action. J. Immunol. 180, 2099–2106 (2008).

    CAS  PubMed  Google Scholar 

  35. Kobayashi, H. et al. Role of trans-cellular IL-15 presentation in the activation of NK cell-mediated killing, which leads to enhanced tumor immunosurveillance. Blood 105, 721–727 (2005).

    CAS  PubMed  Google Scholar 

  36. Castillo, E. F. & Schluns, K. S. Regulating the immune system via IL-15 transpresentation. Cytokine 59, 479–490 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Wrangle, J. M. et al. ALT-803, an IL-15 superagonist, in combination with nivolumab in patients with metastatic non-small cell lung cancer: a non-randomised, open-label, phase 1b trial. Lancet Oncol. 19, 694–704 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang, M. et al. Interleukin-15 combined with an anti-CD40 antibody provides enhanced therapeutic efficacy for murine models of colon cancer. Proc. Natl Acad. Sci. USA 106, 7513–7518 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang, M. et al. Augmented IL-15Ralpha expression by CD40 activation is critical in synergistic CD8 T cell-mediated antitumor activity of anti-CD40 antibody with IL-15 in TRAMP-C2 tumors in mice. J. Immunol. 188, 6156–6164 (2012).

    CAS  PubMed  Google Scholar 

  40. Yu, P. et al. Simultaneous inhibition of two regulatory T-cell subsets enhanced Interleukin-15 efficacy in a prostate tumor model. Proc. Natl Acad. Sci. USA 109, 6187–6192 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Moga, E. et al. Interleukin-15 enhances rituximab-dependent cytotoxicity against chronic lymphocytic leukemia cells and overcomes transforming growth factor beta-mediated immunosuppression. Exp. Hematol. 39, 1064–1071 (2011).

    CAS  PubMed  Google Scholar 

  42. Zhang, M. et al. IL-15 enhanced antibody-dependent cellular cytotoxicity mediated by NK cells and macrophages. Proc. Natl Acad. Sci. USA 115, E10915–E10924 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Silva, D. A. et al. De novo design of potent and selective mimics of IL-2 and IL-15. Nature 565, 186–191 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Tang, L. et al. Enhancing T cell therapy through TCR-signaling-responsive nanoparticle drug delivery. Nat. Biotechnol. 36, 707–716 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Fiorentino, D. F., Bond, M. W. & Mosmann, T. R. Two types of mouse T helper cell. IV. Th2 clones secrete a factor that inhibits cytokine production by Th1 clones. J. Exp. Med. 170, 2081–2095 (1989).

    CAS  PubMed  Google Scholar 

  46. Mosmann, T. R. & Moore, K. W. The role of IL-10 in crossregulation of TH1 and TH2 responses. Immunol. Today 12, A49–A53 (1991).

    CAS  PubMed  Google Scholar 

  47. Bedke, T., Muscate, F., Soukou, S., Gagliani, N. & Huber, S. Title: IL-10-producing T cells and their dual functions. Semin. Immunol. 44, 101335 (2019).

    PubMed  Google Scholar 

  48. Saravia, J., Chapman, N. M. & Chi, H. Helper T cell differentiation. Cell Mol. Immunol. 16, 634–643 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Chaudhry, A. et al. Interleukin-10 signaling in regulatory T cells is required for suppression of Th17 cell-mediated inflammation. Immunity 34, 566–578 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Moore, K. W., de Waal Malefyt, R., Coffman, R. L. & O’Garra, A. Interleukin-10 and the interleukin-10 receptor. Annu. Rev. Immunol. 19, 683–765 (2001).

    CAS  PubMed  Google Scholar 

  51. Ouyang, W., Rutz, S., Crellin, N. K., Valdez, P. A. & Hymowitz, S. G. Regulation and functions of the IL-10 family of cytokines in inflammation and disease. Annu. Rev. Immunol. 29, 71–109 (2011).

    CAS  PubMed  Google Scholar 

  52. Lin, X. et al. IL-10-producing regulatory B cells restrain the T follicular helper cell response in primary Sjogren’s syndrome. Cell Mol. Immunol. 16, 921–931 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Jarry, A. et al. Mucosal IL-10 and TGF-beta play crucial roles in preventing LPS-driven, IFN-gamma-mediated epithelial damage in human colon explants. J. Clin. Investig. 118, 1132–1142 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Itakura, E. et al. IL-10 expression by primary tumor cells correlates with melanoma progression from radial to vertical growth phase and development of metastatic competence. Mod. Pathol. 24, 801–809 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Yoon, S. I., Logsdon, N. J., Sheikh, F., Donnelly, R. P. & Walter, M. R. Conformational changes mediate interleukin-10 receptor 2 (IL-10R2) binding to IL-10 and assembly of the signaling complex. J. Biol. Chem. 281, 35088–35096 (2006).

    CAS  PubMed  Google Scholar 

  56. Murray, P. J. Understanding and exploiting the endogenous interleukin-10/STAT3-mediated anti-inflammatory response. Curr. Opin. Pharm. 6, 379–386 (2006).

    CAS  Google Scholar 

  57. Hutchins, A. P., Diez, D. & Miranda-Saavedra, D. The IL-10/STAT3-mediated anti-inflammatory response: recent developments and future challenges. Brief. Funct. Genom. 12, 489–498 (2013).

    CAS  Google Scholar 

  58. Finbloom, D. S. & Winestock, K. D. IL-10 induces the tyrosine phosphorylation of tyk2 and Jak1 and the differential assembly of STAT1 alpha and STAT3 complexes in human T cells and monocytes. J. Immunol. 155, 1079–1090 (1995).

    CAS  PubMed  Google Scholar 

  59. Wehinger, J. et al. IL-10 induces DNA binding activity of three STAT proteins (Stat1, Stat3, and Stat5) and their distinct combinatorial assembly in the promoters of selected genes. FEBS Lett. 394, 365–370 (1996).

    CAS  PubMed  Google Scholar 

  60. Rahimi, A. A., Gee, K., Mishra, S., Lim, W. & Kumar, A. STAT-1 mediates the stimulatory effect of IL-10 on CD14 expression in human monocytic cells. J. Immunol. 174, 7823–7832 (2005).

    CAS  PubMed  Google Scholar 

  61. Kobayashi, M. et al. Toll-like receptor-dependent production of IL-12p40 causes chronic enterocolitis in myeloid cell-specific Stat3-deficient mice. J. Clin. Investig. 111, 1297–1308 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Matsukawa, A. et al. Stat3 in resident macrophages as a repressor protein of inflammatory response. J. Immunol. 175, 3354–3359 (2005).

    CAS  PubMed  Google Scholar 

  63. Conaway, E. A., de Oliveira, D. C., McInnis, C. M., Snapper, S. B. & Horwitz, B. H. Inhibition of inflammatory gene transcription by IL-10 is associated with rapid suppression of lipopolysaccharide-induced enhancer activation. J. Immunol. 198, 2906–2915 (2017).

    CAS  PubMed  Google Scholar 

  64. Fiorentino, D. F. et al. IL-10 acts on the antigen-presenting cell to inhibit cytokine production by Th1 cells. J. Immunol. 146, 3444–3451 (1991).

    CAS  PubMed  Google Scholar 

  65. Murai, M. et al. Interleukin 10 acts on regulatory T cells to maintain expression of the transcription factor Foxp3 and suppressive function in mice with colitis. Nat. Immunol. 10, 1178–1184 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Ip, W. K. E., Hoshi, N., Shouval, D. S., Snapper, S. & Medzhitov, R. Anti-inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages. Science 356, 513–519 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhang, Y. et al. Type 3 innate lymphoid cell-derived lymphotoxin prevents microbiota-dependent inflammation. Cell Mol. Immunol. 15, 697–709 (2018).

    CAS  PubMed  Google Scholar 

  68. Wang, X., Wong, K., Ouyang, W. & Rutz, S. Targeting IL-10 family cytokines for the treatment of human diseases. Cold Spring Harb. Perspect. Biol. 11, https://doi.org/10.1101/cshperspect.a028548 (2019).

  69. Ruffell, B. et al. Macrophage IL-10 blocks CD8+ T cell-dependent responses to chemotherapy by suppressing IL-12 expression in intratumoral dendritic cells. Cancer Cell 26, 623–637 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Sun, Z. et al. IL10 and PD-1 cooperate to limit the activity of tumor-specific CD8+ T cells. Cancer Res. 75, 1635–1644 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Wilke, C. M. et al. Dual biological effects of the cytokines interleukin-10 and interferon-gamma. Cancer Immunol. Immunother. 60, 1529–1541 (2011).

    CAS  PubMed  Google Scholar 

  72. Enk, A. H., Jonuleit, H., Saloga, J. & Knop, J. Dendritic cells as mediators of tumor-induced tolerance in metastatic melanoma. Int. J. Cancer 73, 309–316 (1997).

    CAS  PubMed  Google Scholar 

  73. Loercher, A. E., Nash, M. A., Kavanagh, J. J., Platsoucas, C. D. & Freedman, R. S. Identification of an IL-10-producing HLA-DR-negative monocyte subset in the malignant ascites of patients with ovarian carcinoma that inhibits cytokine protein expression and proliferation of autologous T cells. J. Immunol. 163, 6251–6260 (1999).

    CAS  PubMed  Google Scholar 

  74. De Santo, C. et al. Invariant NKT cells modulate the suppressive activity of IL-10-secreting neutrophils differentiated with serum amyloid A. Nat. Immunol. 11, 1039–1046 (2010).

    PubMed  PubMed Central  Google Scholar 

  75. O’Garra, A., Barrat, F. J., Castro, A. G., Vicari, A. & Hawrylowicz, C. Strategies for use of IL-10 or its antagonists in human disease. Immunol. Rev. 223, 114–131 (2008).

    PubMed  Google Scholar 

  76. Mannino, M. H. et al. The paradoxical role of IL-10 in immunity and cancer. Cancer Lett. 367, 103–107 (2015).

    CAS  PubMed  Google Scholar 

  77. Giovarelli, M. et al. Local release of IL-10 by transfected mouse mammary adenocarcinoma cells does not suppress but enhances antitumor reaction and elicits a strong cytotoxic lymphocyte and antibody-dependent immune memory. J. Immunol. 155, 3112–3123 (1995).

    CAS  PubMed  Google Scholar 

  78. Berman, R. M. et al. Systemic administration of cellular IL-10 induces an effective, specific, and long-lived immune response against established tumors in mice. J. Immunol. 157, 231–238 (1996).

    CAS  PubMed  Google Scholar 

  79. Zheng, L. M. et al. Interleukin-10 inhibits tumor metastasis through an NK cell-dependent mechanism. J. Exp. Med. 184, 579–584 (1996).

    CAS  PubMed  Google Scholar 

  80. Fujii, S., Shimizu, K., Shimizu, T. & Lotze, M. T. Interleukin-10 promotes the maintenance of antitumor CD8(+) T-cell effector function in situ. Blood 98, 2143–2151 (2001).

    CAS  PubMed  Google Scholar 

  81. Mumm, J. B. et al. IL-10 elicits IFNgamma-dependent tumor immune surveillance. Cancer Cell 20, 781–796 (2011).

    CAS  PubMed  Google Scholar 

  82. Emmerich, J. et al. IL-10 directly activates and expands tumor-resident CD8(+) T cells without de novo infiltration from secondary lymphoid organs. Cancer Res 72, 3570–3581 (2012).

    CAS  PubMed  Google Scholar 

  83. Wang, Y. et al. Autocrine complement inhibits IL10-dependent T-cell-mediated antitumor immunity to promote tumor progression. Cancer Discov. 6, 1022–1035 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Naing, A. et al. Safety, antitumor activity, and immune activation of pegylated recombinant human interleukin-10 (AM0010) in patients with advanced solid tumors. J. Clin. Oncol. 34, 3562–3569 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Naing, A. et al. Pegilodecakin combined with pembrolizumab or nivolumab for patients with advanced solid tumours (IVY): a multicentre, multicohort, open-label, phase 1b trial. Lancet Oncol. 20, 1544–1555 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Lauw, F. N. et al. Proinflammatory effects of IL-10 during human endotoxemia. J. Immunol. 165, 2783–2789 (2000).

    CAS  PubMed  Google Scholar 

  87. Tilg, H. et al. Treatment of Crohn’s disease with recombinant human interleukin 10 induces the proinflammatory cytokine interferon gamma. Gut 50, 191–195 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Qiao, J. et al. Targeting tumors with IL-10 prevents dendritic cell-mediated CD8(+) T cell apoptosis. Cancer Cell 35, 901–915.e4 (2019).

    CAS  PubMed  Google Scholar 

  89. Mattos, A., de Jager-Krikken, A., de Haan, M., Beljaars, L. & Poelstra, K. PEGylation of interleukin-10 improves the pharmacokinetic profile and enhances the antifibrotic effectivity in CCl(4)-induced fibrogenesis in mice. J. Control Release 162, 84–91 (2012).

    CAS  PubMed  Google Scholar 

  90. Horton, B. L., Williams, J. B., Cabanov, A., Spranger, S. & Gajewski, T. F. Intratumoral CD8(+) T-cell apoptosis is a major component of T-cell dysfunction and impedes antitumor immunity. Cancer Immunol. Res. 6, 14–24 (2018).

    CAS  PubMed  Google Scholar 

  91. Peng, W. et al. PD-1 blockade enhances T-cell migration to tumors by elevating IFN-gamma inducible chemokines. Cancer Res. 72, 5209–5218 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Shi, L. Z. et al. Interdependent IL-7 and IFN-gamma signalling in T-cell controls tumour eradication by combined alpha-CTLA-4+alpha-PD-1 therapy. Nat. Commun. 7, 12335 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Wei, S. C. et al. Distinct cellular mechanisms underlie anti-CTLA-4 and anti-PD-1 checkpoint blockade. Cell 170, 1120–1133.e1117 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Brahmer, J. R. et al. Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: American Society of Clinical Oncology Clinical Practice Guideline. J. Clin. Oncol. 36, 1714–1768 (2018).

    CAS  PubMed  Google Scholar 

  95. Wolchok, J. D. et al. Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N. Engl. J. Med. 377, 1345–1356 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Bentebibel, S. E. et al. A first-in-human study and biomarker analysis of NKTR-214, a novel IL2Rbetagamma-biased cytokine, in patients with advanced or metastatic solid tumors. Cancer Discov. 9, 711–721 (2019).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Qiao or Yang-Xin Fu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, J., Fu, YX. Cytokines that target immune killer cells against tumors. Cell Mol Immunol 17, 722–727 (2020). https://doi.org/10.1038/s41423-020-0481-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-020-0481-0

Keywords

This article is cited by

Search

Quick links