Skip to main content
Log in

Phase Separation of Polymethylpentene Solutions for Producing Microfiltration Membranes

  • POLYMER MEMBRANES
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract

Microfiltration membranes have been obtained from polymethylpentene by phase separation of its dioctyl sebacate solutions under cooling. The dissolution of the polymer was carried out at its melting point followed by formation of membrane precursors in the form of films from the resulting solution, which were then cooled and washed with acetone to remove the ester and pore formation. Using laser interferometry, it is shown that the phase diagram of the polymethylpentene–dioctyl sebacate system corresponds to amorphous separation with the UCST. The rheology of solutions is studied by rotational rheometry, and it found that the logarithm of viscosity decreases linearly with increasing concentration of dioctyl sebacate. According to calorimetry, dioctyl sebacate plasticizes polymethylpentene, reducing its crystallinity. Treatment of the resulting films with acetone leads to the complete extraction of dioctyl sebacate, and, at its concentration of 25–45 wt %, a through porous structure is formed. This procedure makes it possible to obtain fairly strong membranes with a water permeability of 16.4 kg/(m2 h atm) and a retention coefficient of submicron particles with a diameter of 240 nm equal to 80%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. M. Heckele and W. K. Schomburg, J. Micromech. Microeng. 14, R1 (2004).

    Article  CAS  Google Scholar 

  2. A. V. Shenoy, Selecting Thermoplastics for Engineering Applications (CRC Press, Boca Raton, 1997).

    Google Scholar 

  3. J. L. Hedrick, I. Yilgör, G. L. Wilkes, and J. E. McGrath, Polym. Bull. 13, 201 (1985).

    Article  CAS  Google Scholar 

  4. D. G. Laurin, L. F. Czuba, and L. F. Becker, US Patent No. 4196731 (1980).

  5. J. Rambaud, J. Guilbert, I. Guellec, and S. Renolleau, Perfusion 28, 14 (2012).

    Article  Google Scholar 

  6. K. Lehle, L. Friedl, J. Wilm, A. Philipp, T. Muller, M. Lubnow, and C. Schmid, Artif. Organs 40, 577 (2016).

    Article  CAS  Google Scholar 

  7. P. A. Patil, S. D. Wanjale, and J. P. Jog, e-Polym. 8 (1), 079 (2008).

  8. U. Rosenberg and W. Bogl, Food Technol. 41 (6), 92 (1987).

    Google Scholar 

  9. W. A. Rutala and D. J. Weber, Emerging Infect. Dis. 7, 348 (2001).

    Article  CAS  Google Scholar 

  10. B. J. Epperson, L. J. Burnett, and V. D. Helm, US Patent No. 4415608 (1983).

  11. A. K. Walker, Anaesthesia 33, 35 (1978).

    Article  CAS  Google Scholar 

  12. I. Pafylias, M. Cheryan, M. A. Mehaia, and N. Saglam, Food Res. Int. 29, 141 (1996).

    Article  CAS  Google Scholar 

  13. A. Papadatos, M. Neocleous, A. M. Berger, and D. M. Barbano, J. Dairy Sci. 86, 1564 (2003).

    Article  CAS  Google Scholar 

  14. M. Ma and R. M. Hill, Curr. Opin. Colloid Interface Sci. 11, 193 (2006).

    Article  CAS  Google Scholar 

  15. P. Zhang and F. Y. Lv, Energy 82, 1068 (2015).

    Article  Google Scholar 

  16. X.-M. Li, D. Reinhoudt, and M. Crego-Calama, Chem. Soc. Rev. 36, 1350 (2007).

    Article  Google Scholar 

  17. I. Sas, R. E. Gorga, J. A. Joines, and K. A. Thoney, J. Polym. Sci., Part B: Polym. Phys. 50, 824 (2012).

    Article  CAS  Google Scholar 

  18. T. S. Anokhina, S. O. Ilyin V. Ya., Ignatenko, D. S. Bakhtin, A. V. Kostyuk, S. V. Antonov, and A. V. Volkov, Polym. Sci., Ser. A 61, 619 (2019).

    Article  CAS  Google Scholar 

  19. A. M. A. Mohamed, A. M. Abdullah, and N. A. Younan, Arab. J. Chem.8, 749 (2015).

    Article  CAS  Google Scholar 

  20. A. B. Gurav, C. S. Maruti, and R. S. Vhatkar, J. Surf. Eng. Mater. Adv. Technol. 2, 76 (2012).

    Google Scholar 

  21. D. M. Warsinger, J. Swaminathan, E. Guillen-Burrieza, H. A. Arafat, V. J. H. Lienhard, Desalination 356, 294 (2015).

    Article  CAS  Google Scholar 

  22. L. Eykens, K. De. Sitter, C. Dotremont, L. Pinoy, and B. Van der Bruggen, Sep. Purif. Technol. 182, 36 (2017).

    Article  CAS  Google Scholar 

  23. I. L. Radchenko and S. V. Kolosov, RF Patent No. 2572974 (2014).

  24. L. B. Boinovich and A. M. Emel’yanenko, RF Patent No. 2605401 (2014).

  25. Ts. Tsin’, D. E. Uoldrup, K. M. Megaridis, T. M. Shuttsius, and I. S. Baier, RF Patent No. 2601339 (2012).

  26. Y. Y. Yan, N. Gao, and W. Barthlott, Adv. Colloid Interface Sci. 169, 80 (2011).

    Article  CAS  Google Scholar 

  27. P. Witte, P. J. Dijkstra, J. W. A. Berg, and J. Feijen, J. Membr. Sci. 117, 1 (1996).

    Article  Google Scholar 

  28. S. O. Ilyin, V. V. Makarova, T. S. Anokhina, V. Y. Ignatenko, T. V. Brantseva, A. V. Volkov, and S. V. Antonov, Cellulose 25, 2515 (2018).

    Article  CAS  Google Scholar 

  29. S. O. Ilyin, V. V. Makarova, T. S. Anokhina, A. V. Volkov, and S. V. Antonov, Polym. Sci., Ser. A 59, 646 (2017).

    Google Scholar 

  30. P. Apel, Radiat. Meas. 34, 559 (2001).

    Article  CAS  Google Scholar 

  31. F. Sadeghi, A. Ajji, and P. J. Carreau, J. Membr. Sci. 292, 62 (2007).

    Article  CAS  Google Scholar 

  32. V. A. Dyatlov, T. A. Grebeneva, I. R. Rustamov, O. V. Belokon, V. V. Kireev, and M. N. Ilina, Polym. Sci., Ser. B 55, 169 (2013).

    Article  CAS  Google Scholar 

  33. Y. M. Maksimova, A. S. Shakhmatova, S. O. Ilyin, O. A. Pakhmanova, A. S. Lyadov, S. V. Antonov, and O. P. Parenago, Pet. Chem. 58, 1064 (2018).

    Article  CAS  Google Scholar 

  34. A. E. Chalykh and V. K. Gerasimov, Russ. Chem. Rev. 73, 59 (2004).

    Article  CAS  Google Scholar 

  35. V. Makarova and V. Kulichikhin, in Interferometry. Research and Applications in Science and Technology, Ed. by I. Padron (InTech, Rijeka, 2012).

    Google Scholar 

  36. S. Arrhenius, Z. Phys. Chem. 1 (1), 285 (1887).

    Google Scholar 

  37. X. M. Li, D. Reinhoudt, and M. Crego-Calama, Chem. Soc. Rev. 36, 1350 (2007).

    Article  Google Scholar 

  38. S. S. Latthe, A. B. Gurav, C. S. Maruti, and R. S. Vhatkar, J. Surf. Eng. Mater. Adv. Technol. 2 (02), 76 (2012).

    CAS  Google Scholar 

Download references

Funding

This work was supported by the Council for Grants of the President of the Russian Federation (project MD-6642.2018.8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. O. Ilyin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ignatenko, V.Y., Anokhina, T.S., Ilyin, S.O. et al. Phase Separation of Polymethylpentene Solutions for Producing Microfiltration Membranes. Polym. Sci. Ser. A 62, 292–299 (2020). https://doi.org/10.1134/S0965545X20030098

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X20030098

Navigation