Skip to main content
Log in

Study of Physicomechanical Properties of Composite Fibers Based on Polylactide and Modified Chitin Nanofibrils

  • POLYMER BLENDS
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract

Using a twin-screw microextruder, fibers are synthesized from polylactide with the addition of two types of chitin nanofibrils—both original and modified with poly(ethylene glycol). The fibers are subjected to the additional high-temperature orientational drawing by a factor of 4 and 6. Composite materials are investigated by a complex of thermophysical and structural methods, and their physicomechanical properties are determined. It is shown that the modification of chitin nanoparticles with poly(ethylene glycol) allows one to obtain bioresorbable composite materials with improved physicomechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. European Commission (2013) Plastic Waste-Strategy and Background. http://ec.europa.eu/environment/waste/ plastic_waste.htm. Cited February 15, 2017.

  2. FICCI (2014) Potential of Plastics Industry in Northern India with Special Focus on Plastic Culture and Food Processing. http://www.ficci.in. Cited 2020.

  3. A. D. Tripathi, A. Yadav, A. Jha, and S. K. J. Srivastava, J. Polym. Environ. 20, 446 (2012).

    Article  CAS  Google Scholar 

  4. D. R. Lu, C. M. Xiao, and S. J. Xu, eXPRESS Polym. Lett. 3, 366 (2009).

    Article  CAS  Google Scholar 

  5. G. E. Luckachan and C. K. S. Pillai, Carbohydr. Polym. 64, 254 (2006).

    Article  CAS  Google Scholar 

  6. L. S. Nair and C. T. Laurencin, Prog. Polym. Sci. 32, 762 (2007).

    Article  CAS  Google Scholar 

  7. R. A. Gross and B. Kalra, Science 297 (5582), 803 (2002).

    Article  CAS  Google Scholar 

  8. V. Podzorova, Yu. V. Tertyshnaya, and A. A. Popov, Polym. Sci., Ser. D 10, 289 (2017).

    CAS  Google Scholar 

  9. R. E. Drumright, P. R. Gruber, D. E. Henton, Adv. Mater. 12, 1841 (2000).

    Article  CAS  Google Scholar 

  10. L. Yu, K. Dean, and L. Li, Prog. Polym. Sci. 31, 576 (2006).

    Article  CAS  Google Scholar 

  11. D. Garlotta, J. Polym. Environ. 9, 63 (2001).

    Article  CAS  Google Scholar 

  12. A. Valdés, A. C. Mellinas, M. Ramos, M. Garriigós, and A. Jiménez, Front. Chem. 2, 1 (2014).

    Article  Google Scholar 

  13. L. Cabedo, J. L. Feijoo, M. P. Villanueva, J. M. Lagarón, and E. Giménez, Macromol. Symp. 233, 191 (2006).

    Article  CAS  Google Scholar 

  14. B. Baxand J. Müssig, Compos. Sci. Technol. 68, 1601 (2009).

  15. S. Cheng, K.-T. Lau, T. Liu, Y. Zhao, P.-M. Lam, and Y. Yin, Composites, Part B 40, 650 (2009).

    Article  Google Scholar 

  16. A. P. Mathew, K. Oksman, and M. Sain, J. Appl. Polym. Sci. 97, 2014 (2005).

    Article  CAS  Google Scholar 

  17. I. S. M. A. Tawakkal, R. A. Talib, K. Abdan, and C. N. Ling, BioResources 7, 1643 (2012).

    Article  Google Scholar 

  18. M. Jamshidian, E. Arab Tehrany, M. Imran, M. Jacquot, and S. Desobry, Compr. Rev. Food Sci. Food Saf. 9, 552 (2010).

    Article  CAS  Google Scholar 

  19. M. Persson, G. S. Lorite, H. E. Kokkonen, S.-W. Cho, P. P. Lehenkari, M. Skrifars, and J. Tuukkanen, Colloids Surf., B 121, 409 (2014).

    Article  CAS  Google Scholar 

  20. Melt Spinning Process. Feature of Melt Spinning. Advantages and Disadvantages of Melt Spinning. http://textilelearner.blogspot.com/2013/10/melt-spinning-process-feature-of-melt.html. Cited December 12, 2018.

  21. M. Jacob John, R. Anandjiwala, K. Oksman, and A. P. Mathew, J. Appl. Polym. Sci. 127, 274 (2013).

    Article  Google Scholar 

  22. K. V. Malafeev, O. A. Moskalyuk, V. E. Yudin, P. Morganti, E. M. Ivan’kova, E. N. Popova, and Y. U. Elo-khovskii, J. Appl. Cosmetol. 35, 163 (2017).

    Google Scholar 

  23. M. Sheth, R. Ananda Kumar, V. Davé, R. A. Gross, and S. P. McCathy, J. Appl. Polym. Sci. 66, 1495 (1997).

    Article  CAS  Google Scholar 

  24. H. Otsuka, Y. Nagasaki, and K. Kataoka, Biomacromolecules 1, 39 (2000).

    Article  CAS  Google Scholar 

  25. I. P. Dobrovol’skaya, in Nauch.-Tekhn. Ved. SPb Gos. Politekhn. Univ. Fiz.-Mat. Nauki, No. 4 (206), 74 (2014).

    Google Scholar 

  26. M. B. Coltelli, P. Cinelli, V. Gigante, L. Aliotta, P. Morganti, L. Panariello, and A. Lazzeri, Int. J. Mol. Sci. 20, 504 (2019).

    Article  Google Scholar 

  27. H. Bai, C. Huang, H. Xiu, Q. Zhang, and Q. Fu, Polymer 55, 6924 (2014).

    Article  CAS  Google Scholar 

  28. I. Kola and J. Landis, Nat. Rev. Drug Discovery 3, 711 (2004).

    Article  CAS  Google Scholar 

  29. X. Niu, Q. Feng, M. Wang, X. Guo, and C. Zheng, Polym. Degrad. Stab. 94, 176 (2009).

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project code 19-73-30003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Malafeev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malafeev, K.V., Moskalyuk, O.A., Yudin, V.E. et al. Study of Physicomechanical Properties of Composite Fibers Based on Polylactide and Modified Chitin Nanofibrils. Polym. Sci. Ser. A 62, 249–259 (2020). https://doi.org/10.1134/S0965545X20030104

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X20030104

Navigation