Skip to main content
Log in

Polyelectrolyte Complexes of Partially Betainated Chitosan Derivatives Soluble in Weakly Alkaline Media

  • POLYELECTROLYTES
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract

The design of biologically active dosage forms based on chitosan is significantly limited by its insolubility at pH values above 6.0–6.5 and worsening of its gastrointestinal absorption capacity upon transition to neutral and alkaline environmental conditions. The partial acylation of short-chain chitosans with the use of betaine in the presence of a coupling reagent (betaination) allows one to synthesize noncytotoxic derivatives soluble in an alkaline medium and preserving a high antibacterial activity in weakly alkaline physiological media, which makes them promising for application in pharmaceutical compositions. This study addresses the formation of polyelectrolyte complexes of partially betainated short-chain chitosans with different chain length and degree of betaination with a weak polyacid in acidic and weakly alkaline media. As a polyanion, a regularly alternating copolymer of maleic acid and N-vinylpyrrolidone is used, one of the advantages of which is its ability to be involved in chemical modification with various ligands, including biologically active ones. It is shown that soluble polyelectrolyte complexes can be formed by the direct mixing of components in a weakly alkaline medium (pH 7.4). The range of solubility of the complexes ([polycation] : [polyanion]) in a weakly alkaline medium is wider than that in an acidic one. Nonstoichiometric soluble polyelectrolyte complexes are also prepared using partially betainated chitosans as lyophilizing polyelectrolytes. The structure of soluble polyelectrolyte complexes of various compositions is investigated by static and dynamic light scattering as well as electrophoretic light scattering. The data obtained suggest that, both in the acidic and weakly alkaline medium, the polyelectrolyte complexes occur as polymolecular particles with either negative or positive surface charge. The results of this study can be used for designing new biocompatible and biodegradable delivery systems for biologically active compounds and genetic material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. R. Riva, H. Raguelle, A. des Rieux, N. Duhem, C. Jérôme, and V. Préat, in Chitosan for Biomaterials II, Ed. by R. Jayakumar, M. Prabaharan, and R. A. A. Muzzarelli (Springer Berlin Heidelberg, Berlin; Heidelberg, 2011), Vol. 244, pp. 19–44.

  2. Y. Luo and Q. Wang, Int. J. Biol. Macromol. 64, 353 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Yu. S. Khotimchenko, Tikhookean. Med. Zh. 2, 5 (2014).

    Google Scholar 

  4. Q.-X. Wu, D.-Q. Lin, and S.-J. Yao, Mar. Drugs 12, 6236 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. T. Ahmed and B. Aljaeid, Drug Des., Dev. Ther. 10, 483 (2016).

    Article  CAS  Google Scholar 

  6. M. A. Krayukhina, N. A. Samoilova, and I. A. Yamskov, Russ. Chem. Rev. 77, 799 (2008).

    Article  CAS  Google Scholar 

  7. M. Müller, in Polyelectrolyte Complexes in the Dispersed and Solid State II, Ed. by M. Müller (Springer-Verlag, Berlin; Heidelberg, 2012), pp. 197–260.

    Google Scholar 

  8. M. D. Buschmann, A. Merzouki, M. Lavertu, M. Thibault, M. Jean, and V. Darras, Adv. Drug Delivery Rev. 65, 1234 (2013).

    Article  CAS  Google Scholar 

  9. A. S. Kritchenkov, S. Andranovits, and Y. A. Skorik, Russ. Chem. Rev. 86, 231 (2017).

    Article  CAS  Google Scholar 

  10. D.-H. Ngo, T.-S. Vo, D.-N. Ngo, K.-H. Kang, J.-Y. Je, H. N.-D. Pham, H.-G. Byun, and S.-K. Kim, Food Hydrocolloids 51, 200 (2015).

    Article  CAS  Google Scholar 

  11. M. Wu, Z. Long, H. Xiao, and C. Dong, Carbohydr. Res. 434, 27(2016).

    Article  CAS  PubMed  Google Scholar 

  12. L. A. Nud’ga, E. A. Plisko, and S. N. Danilov, Zh. Obshch. Khim. 43, 2756 (1973).

    Google Scholar 

  13. A. Polnok, G. Borchard, J. C. Verhoef, N. Sarisuta, and H. E. Junginger, Eur. J. Pharm. Biopharm. 57, 77 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. V. A. Spinelli, M. C. M. Laranjeira, and V. T. Fávere, React. Funct. Polym. 61, 347 (2004).

    Article  CAS  Google Scholar 

  15. M. Ignatova, K. Starbova, N. Markova, N. Manolova, and I. Rashkov, Carbohydr. Res. 341, 2098 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. S.-H. Lim and S. M. Hudson, Carbohydr. Res. 339, 313 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. E. Loubaki, S. Sicsic, and F. Le Goffic, Eur. Polym. J. 25, 379 (1989).

    Article  CAS  Google Scholar 

  18. R. A. A. Muzzarelli and F. Tanfani, Carbohydr. Polym. 5, 297 (1985).

    Article  CAS  Google Scholar 

  19. A. Domard, M. Rinaudo, and C. Terrassin, Int. J. Biol. Macromol. 8, 105 (1986).

    Article  CAS  Google Scholar 

  20. E. Loubaki, M. Ourevitch, and S. Sicsic, Eur. Polym. J. 27, 311 (1991).

    Article  CAS  Google Scholar 

  21. P. le Dung, M. Milas, M. Rinaudo, and J. Desbrieres, Carbohydr. Polym. 24, 209 (1994).

    Article  Google Scholar 

  22. A. B. Sieval, M. Thanou, A. F. Kotzé, J. C. Verhoef, J. Brussee, and H. E. Junginger, Carbohydr. Polym. 36, 157 (1998).

    Article  CAS  Google Scholar 

  23. Z. Jia, D. Shen, and W. Xu, Carbohydr. Res. 333, 1 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. J. H. Hamman and A. F. Kotzé, Drug Dev. Ind. Pharm. 27, 373 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. D. Snyman, J. H. Hamman, J. S. Kotze, J. E. Rollings, and A. F. Kotzé, Carbohydr. Polym. 50, 145 (2002).

    Article  CAS  Google Scholar 

  26. P. V. A. Bueno, P. R. Souza, H. D. M. Follmann, A. G. B. Pereira, A. F. Martins, A. F. Rubira, and E. C. Muniz, Int. J. Biol. Macromol. 75, 186 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. A. Zubareva, B. Shagdarova, V. Varlamov, E. Kashirina, and E. Svirshchevskaya, Eur. Polym. J. 93, 743 (2017).

    Article  CAS  Google Scholar 

  28. A. D. Kulkarni, H. M. Patel, S. J. Surana, Y. H. Vanjari, V. S. Belgamwar, and C. V. Pardeshi, Carbohydr. Polym. 157, 875 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. A. D. Kulkarni, Y. H. Vanjari, K. H. Sancheti, H. M. Patel, V. S. Belgamwar, S. J. Surana, and C. V. Pardeshi, Int. J. Biol. Macromol. 88, 476 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. K. Kalinov, M. Ignatova, N. Manolova, I. Rashkov, N. Markova, and D. Momekova, Colloid Polym. Sci. 292, 2899 (2014).

    Article  CAS  Google Scholar 

  31. A. M. M. Sadeghi, F. A. Dorkoosh, M. R. Avadi, P. Saadat, M. Rafiee-Tehrani, and H. E. Junginger, Int. J. Pharm. 355, 299 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. A. Bayat, F. A. Dorkoosh, A. R. Dehpour, L. Moezi, B. Larijani, H. E. Junginger, and M. Rafiee-Tehrani, Int. J. Pharm. 356, 259 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. A. F. Martins, J. F. Piai, I. T. A. Schuquel, A. F. Rubira, and E. C. Muniz, Colloid Polym. Sci. 289, 1133 (2011).

    Article  CAS  Google Scholar 

  34. A. F. Martins, A. G. B. Pereira, A. R. Fajardo, A. F. Rubira, and E. C. Muniz, Carbohydr. Polym. 86, 1266 (2011).

    Article  CAS  Google Scholar 

  35. M. Y. Gorshkova, I. F. Volkova, S. G. Alekseeva, N. N. Molotkova, E. E. Skorikova, and V. A. Izumrudov, Polym. Sci., Ser. A 53, 57 (2011).

    Article  CAS  Google Scholar 

  36. V. A. Izumrudov, I. F. Volkova, E. S. Grigoryan, and M. Y. Gorshkova, Polym. Sci., Ser. A 53, 281 (2011).

    Article  CAS  Google Scholar 

  37. N. Y. Kostina, M. Y. Gorshkova, and V. A. Izumrudov, Polym. Sci., Ser. A 53, 947 (2011).

    Article  CAS  Google Scholar 

  38. V. A. Izumrudov and M. V. Zhiryakova, Polym. Sci., Ser. A 53, 441 (2011).

    Article  CAS  Google Scholar 

  39. M. V. Zhiryakova, Z. B. Shifrina, and V. A. Izumrudov, Eur. Polym. J. 49, 558 (2013).

    Article  CAS  Google Scholar 

  40. E. Faizuloev, A. Marova, A. Nikonova, I. Volkova, M. Gorshkova, and V. Izumrudov, Carbohydr. Polym. 89, 1088 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. T. Kean and M. Thanou, Adv. Drug Delivery Rev. 62, 3 (2010).

    Article  CAS  Google Scholar 

  42. B. B. Aam, E. B. Heggset, A. L. Norberg, M. Sorlie, K. M. Varum, and V. G. H. Eijsink, Mar. Drugs 8, 1482 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. P. Baldrick, Regul. Toxicol. Pharmacol. 56, 290 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. C. Qin, J. Gao, L. Wang, L. Zeng, and Y. Liu, Food Chem. Toxicol. 44, 855 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. I. V. Blagodatskikh, O. V. Vyshivannaya, A. V. Alexandrova, E. A. Bezrodnykh, P. V. Zelenikhin, S. N. Kulikov, and V. E. Tikhonov, Microbiology 87, 725 (2018).

    Article  CAS  Google Scholar 

  46. E. A. Stepnova, V. E. Tikhonov, T. A. Babushkina, T. P. Klimova, E. V. Vorontsov, V. G. Babak, S. A. Lopatin, and I. A. Yamskov, Eur. Polym. J. 43, 2414 (2007).

    Article  CAS  Google Scholar 

  47. N. Samoilova, M. Krayukhina, A. Naumkin, and I. Yamskov, Monatsh. Chem. 149, 1179 (2018).

    Article  CAS  Google Scholar 

  48. N. A. Samoilova, M. A. Krayukhina, D. A. Popov, N. M. Anuchina, and V. E. Piskarev, Biointerface Res. Appl. Chem. 8, 3095 (2018).

    CAS  Google Scholar 

  49. S. Kulikov, V. Tikhonov, I. Blagodatskikh, E. Bezrodnykh, S. Lopatin, R. Khairullin, Y. Philippova, and S. Abramchuk, Carbohydr. Polym. 87, 545 (2012).

    Article  CAS  Google Scholar 

  50. A. Hirai, H. Odani, and A. Nakajima, Polym. Bull. 26, 87 (1991).

    Article  CAS  Google Scholar 

  51. I. V. Blagodatskikh, S. N. Kulikov, O. V. Vyshivannaya, E. A. Bezrodnykh, and V. E. Tikhonov, Biomacromolecules 18, 1491 (2017).

    Article  CAS  PubMed  Google Scholar 

  52. A. Conix and G. Smets, J. Polym. Sci. 15, 221 (1955).

    Article  CAS  Google Scholar 

  53. I. V. Blagodatskikh, E. A. Bezrodnykh, S. S. Abramchuk, A. V. Muranov, O. V. Sinitsyna, A. R. Khokhlov, and V. E. Tikhonov, J. Polym. Res. 20, 73 (2013).

    Article  CAS  Google Scholar 

  54. N. A. Samoilova, I. V. Blagodatskikh, E. A. Kurskaya, M. A. Krayukhina, O. V. Vyshivannaya, S. S. Abramchuk, A. A. Askadskii, and I. A. Yamskov, Colloid J. 75, 409 (2013).

    Article  CAS  Google Scholar 

  55. V. A. Kabanov, Russ. Chem. Rev. 74, 3 (2005).

    Article  CAS  Google Scholar 

  56. N. Samoilova, V. Tikhonov, M. Krayukhina, and I. Yamskov, J. Appl. Polym. Sci. 131, 39663 (2014).

    Article  CAS  Google Scholar 

  57. P. L. Ma, M. Lavertu, F. M. Winnik, and M. D. Buschmann, Biomacromolecules 10, 1490 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Ministry of Science and Higher Education of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Blagodatskikh.

Additional information

Translated by T. Soboleva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blagodatskikh, I.V., Vyshivannaya, O.V., Samoilova, N.A. et al. Polyelectrolyte Complexes of Partially Betainated Chitosan Derivatives Soluble in Weakly Alkaline Media. Polym. Sci. Ser. A 62, 162–173 (2020). https://doi.org/10.1134/S0965545X20030037

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X20030037

Navigation