Skip to main content
Log in

Branched crack patterns in layers of Laponite® dried under electric fields: Evidence of power-laws and fractal scalin>

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

In the present work we report crack patterns formed in aqueous Laponite® gel in a rectangular box, while exposed to a uniform static electric field. The crack pattern shows a very interesting tree-like geometry extending from the positive to the negative electrode. At the positive electrode a large number of cracks appear at first and merge with each other in stages thus forming tree-like fractal structures. These structures are reminiscent of the Bethe lattice or Cayley tree. The “trees” divide the system into peds of varying size, with numerous smaller ones on the positively charged end, gradually increasing in size, and decreasing in number towards the negative end. If the cumulative distribution of the number of peds exceeding a certain area in size, is plotted against that area, a power-law relation is obtained. This implies a scale-invariant fractal character of the pattern. For a given system size, the exponent of the power-law has a nearly constant value for different applied voltages. We present an experimental study demonstrating this behaviour and discuss how it compares with similar distributions of river-basin areas and viscous fingers in a Hele-Shaw cell.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. F. Giorgiutti-Dauphin, L. Pauchard, Eur. Phys. J. E 41, 32 (2018)

    Article  Google Scholar 

  2. Duyang Zang, Sujata Tarafdar, Yuri Yu. Tarasevich, Moutushi Dutta Choudhury, Tapati Dutta, Phys. Rep. 804, 1 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  3. L. Goehring, A. Nakahara, T. Dutta, S. Kitsunezaki, S. Tarafdar, Desiccation Cracks and their Patterns: Formation and Modelling in Science and Nature (Wiley VCH, 2015).

  4. D. Hull, Fractography: Observing, Measuring and Interpreting Fracture Surface Topography (Cambridge University Press, Cambridge, 1999)

  5. B.R. Lawn, Fracture of Brittle Solids, 2nd edition (Cambridge University Press, Cambridge, 1993)

  6. T.L. Anderson, Fracture Mechanics, Fundamentals and Applications, 3rd edition (Taylor and Francis, New York, 2000)

  7. L.B. Freund, Dynamic Fracture Mechanics (Cambridge University Press, Cambridge, 1990)

  8. K.H. Nam, I.H. Park, S.H. Ko, Nature 485, 221 (2012)

    Article  ADS  Google Scholar 

  9. L. Pauchard, F. Elias, P. Boltenhagen, A. Cebers, J.C. Bacri, Phys. Rev. E 77, 021402 (2008)

    Article  ADS  Google Scholar 

  10. T. Khatun, M.D. Chaudhury, T. Dutta, S. Tarafdar, Phys. Rev. E 86, 016114 (2012)

    Article  ADS  Google Scholar 

  11. A. Ghosh, S. Sircar, T. Khatun, T. Dutta, S. Tarafdar, Mater. Res. Express 6, 026305 (2018)

    Article  ADS  Google Scholar 

  12. T. Sun, P. Meakin, T. Jossang, Phys. Rev. E 49, 4865 (1994)

    Article  ADS  Google Scholar 

  13. C.D. Murray, Proc. Natl. Acad. Sci. U.S.A. 12, 207 (1926)

    Article  ADS  Google Scholar 

  14. S. Roy, S. Tarafdar, Phys. Rev. E 54, 6495 (1996)

    Article  ADS  Google Scholar 

  15. H. van Olphen, Introduction to Clay Chemistry, 2nd edition (John Wiley, New York, 1977)

  16. Roberta Angelini, Laura Zulian, Andrei Fluerasu, Anders Madsen, Giancarlo Ruocco, Barbara Ruzicka, Soft Matter 9, 10955 (2013)

    Article  Google Scholar 

  17. H.Z. Cummins, J. Non-Cryst. Solids 353, 3891 (2007)

    Article  ADS  Google Scholar 

  18. J.H. Masliyah, S. Bhattacharjee, Electrokinetic and Colloid Transport Phenomena (John Wiley & Sons, Inc., 2006)

  19. M. Ostilli, Physica A: Stat. Mech. Appl. 391, 3417 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  20. A.K. Janahmadov, M.Y. Javadov, Synergetics and Fractals in Tribology (Springer, Switzerland, 2016)

  21. Á. Corral, Á. Gonzlez, Earth Space Sci. 6, 673 (2019)

    ADS  Google Scholar 

  22. Vincenzo Guerriero, JMMF 1, 21 (2012)

    Google Scholar 

  23. R. van der Hofstad, Random Graphs and Complex Networks, Vol. 1 (Cambridge University Press, Cambridge, 2016)

  24. C. Stegehuis, R. van der Hofstad, A. Janssen, J.S. van Leeuwaarden, Phys. Rev. E 96, 042309 (2017)

    Article  ADS  Google Scholar 

  25. M. Boguñá, D. Krioukov, K.C. Claffy, Nat. Phys. 5, 74 (2009)

    Article  Google Scholar 

  26. B.B. Mandelbrot, J. Fluid Mech. 62, 331 (1974)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tapati Dutta.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, A., Dutta, T., Tarafdar, S. et al. Branched crack patterns in layers of Laponite® dried under electric fields: Evidence of power-laws and fractal scalin>. Eur. Phys. J. E 43, 33 (2020). https://doi.org/10.1140/epje/i2020-11960-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2020-11960-1

Keywords

Navigation