Skip to main content
Log in

Structural evolution of free-standing 2D silicon carbide upon heating

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Two-dimensional Silicon Carbide (2D SiC) model is studied via molecular dynamics simulation to observe the structural evolution upon heating. A model contains 11040 atoms interacting via Vashishta potentials. The model is heated up from 50 K to 4500 K in order to observe the changes in structures during heating process. The melting point of free-standing 2D SiC is defined to be around 4050 K by temperature dependence of the heat capacity. The Lindemann criterion for 2D case is calculated and used to classify the behaviors of the liquid like and solid like atoms. The atomic mechanism of structural evolution upon heating is analyzed based on the occurrence/growth of liquid like atoms the average coordination number the ring statistics as well as the angular distributions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Lipp, K.A. Schwetz, K. Hunold, J. Eur. Ceram. Soc. 5, 3 (1989)

    Article  Google Scholar 

  2. G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S.K. Banerjee, L. Colombo, Nat. Nanotechnol. 9 (2014) 768.

    Article  ADS  Google Scholar 

  3. Z. Sun, H. Chang, ACS Nano. 8, 4133 (2014)

    Article  Google Scholar 

  4. Z. Liu, S.P. Lau, F. Yan, Chem. Soc. Rev. 44, 5638 (2015)

    Article  Google Scholar 

  5. H. Tian, J. Tice, R. Fei, V. Tran, X. Yan, L. Yang, H. Wang, Nano Today 11, 763 (2016)

    Article  Google Scholar 

  6. H. Song, J. Liu, B. Liu, J. Wu, H.-M. Cheng, F. Kang, Joule 2, 442 (2018)

    Article  Google Scholar 

  7. N.T.T. Hang, Comm. Phys. 26, 381 (2016)

    Article  Google Scholar 

  8. H.T. Nguyen, T.T.T. Hanh, Physica E 106, 95 (2019)

    Article  ADS  Google Scholar 

  9. L. Britnell, R. Gorbachev, R. Jalil, B. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. Katsnelson, L. Eaves, S. Morozov, Science 335, 947 (2012)

    Article  ADS  Google Scholar 

  10. G.C. Constantinescu, N.D. Hine, Nano. Lett. 16, 2586 (2016)

    Article  ADS  Google Scholar 

  11. A. Srivastava, M.S. Fahad, Solid State Electron. Lett. 126, 96 (2016)

    Article  ADS  Google Scholar 

  12. N. Myoung, K. Seo, S.J. Lee, G. Ihm, ACS Nano. 7, 7021 (2013)

    Article  Google Scholar 

  13. H.T. Nguyen, Carbon Lett. 29, 521 (2019)

    Article  Google Scholar 

  14. M. Kawaguchi, T. Kawashima, T. Nakajima, J. Mater. Chem. 8, 1197 (1996)

    Article  Google Scholar 

  15. L. Ci, L. Song, C. Jin, D. Jariwala, D. Wu, Y. Li, A. Srivastava, Z. Wang, K. Storr, L. Balicas, Nat. Mater. 9, 430 (2010)

    Article  ADS  Google Scholar 

  16. P. Li, R. Zhou, X.C. Zeng, Nanoscale 6, 11685 (2014)

    Article  ADS  Google Scholar 

  17. L.E. Rinehart, G.L. Romero, Electrical assembly having heat sink protrusions, Google Patents, 2009

  18. A.L. Moore, L. Shi, Mater. Today 17, 163 (2014)

    Article  Google Scholar 

  19. X.H. Han, Q. Wang, Y.G. Park, C. T’joen, A. Sommers, A. Jacobi, Heat Trans. Eng. 33, 991 (2012)

    Article  ADS  Google Scholar 

  20. C. Zweben, Jom 44, 15 (1992)

    Article  Google Scholar 

  21. S. Sharma, B. Girish, R. Kamath, B. Satish, Wear 213, 33 (1997)

    Article  Google Scholar 

  22. T. Ozben, E. Kilickap, O. Cakr, J. Mater. Process. Technol. 198, 220 (2008)

    Article  Google Scholar 

  23. N. Altnkök, J. Porous Mater. 22, 1643 (2015)

    Article  Google Scholar 

  24. Y. Matsumoto, G. Hirata, H. Takakura, H. Okamoto, Y. Hamakawa, J. Appl. Phys. 67, 6538 (1990)

    Article  ADS  Google Scholar 

  25. P. Baldus, M. Jansen, D. Sporn, Science 285, 699 (1999)

    Article  Google Scholar 

  26. F. Cappelluti, M. Furno, A. Angelini, F. Bonani, M. Pirola, G. Ghione, IEEE Trans. Electron Devices 54, 1744 (2007)

    Article  ADS  Google Scholar 

  27. J. Biela, M. Schweizer, S. Waffler, J.W. Kolar, IEEE Trans. Ind. Electron. 58, 2872 (2010)

    Article  Google Scholar 

  28. P. Skandakumaran, A. Ortega, T. Jamal-Eddine, R. Vaidyanathan, Multi-layered SiC microchannel heat sinks-modeling and experiment, in The Ninth Intersociety Conference on Thermal and Thermomechanical Phenomena In Electronic Systems (IEEE Cat. No. 04CH37543) (IEEE, 2004), pp. 352–360

  29. A. Oliveros, A. Guiseppi-Elie, S.E. Saddow, Biomed. Microdevices 15, 353 (2013)

    Article  Google Scholar 

  30. E. Bekaroglu, M. Topsakal, S. Cahangirov, S. Ciraci, Phys. Rev. B 81, 075433 (2010)

    Article  ADS  Google Scholar 

  31. V.V. Hoang, L.T. Cam Tuyen, T.Q. Dong, Philos. Mag. 96, 1993 (2016)

    Article  ADS  Google Scholar 

  32. J. Tersoff, Phys. Rev. B 39, 5566 (1989)

    Article  ADS  Google Scholar 

  33. E. Pearson, T. Takai, T. Halicioglu, W.A. Tiller, J. Crys, Growth 70, 33 (1984)

    Article  Google Scholar 

  34. H. Huang, N.M. Ghoniem, J.K. Wong, M. Baskes, Model. Simul, Mat. Sci. Eng. 3, 615 (1995)

    Google Scholar 

  35. P. Vashishta, R.K. Kalia, A. Nakano, J.P. Rino, J. Appl. Phys. 101, 103515 (2007)

    Article  ADS  Google Scholar 

  36. S. Plimpton, J. Comput. Phys. 117, 1 (1995)

    Article  ADS  Google Scholar 

  37. S. Le Roux, V. Petkov, J. Appl. Crystallogr. 43, 181 (2010)

    Article  Google Scholar 

  38. W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graphics 14, 33 (1996)

    Article  Google Scholar 

  39. O. Madelung, Semiconductors: group IV elements and III-V compounds (Springer Science & Business Media, 2012)

  40. N.D. Mermin, H. Wagner, Phys. Rev. Lett. 17, 1133 (1966)

    Article  ADS  Google Scholar 

  41. N.D. Mermin, Phys. Rev. 176, 250 (1968)

    Article  ADS  Google Scholar 

  42. L.D. Landau, E.M. Lifshitz, Course of theoretical physics (Elsevier, 2013)

  43. V. Bedanov, G. Gadiyak, Y.E. Lozovik, Phys. Lett. A 109, 289 (1985)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hang T. T. Nguyen.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le Nguyen, T.M., Van Hoang, V. & Nguyen, H.T.T. Structural evolution of free-standing 2D silicon carbide upon heating. Eur. Phys. J. D 74, 108 (2020). https://doi.org/10.1140/epjd/e2020-10101-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2020-10101-1

Keywords

Navigation