Skip to main content
Log in

Destructive-quantum-interference suppression in crown ether single molecule junction

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The electronic transmission coefficient of X-crown ether-Y (X = 3Y ;Y = 4, 5, and 6) have been investigated using density functional theory and Green’s function approximation incorporated with the Hückel method. The results illustrate unexpected role of the oxygen atoms to highly enhance charge transport in the crown ether molecules by moving the destructive quantum interferences (QI) close to the Fermi level. Such slight shifting creates a beneficial peak-valley pattern in the transmission spectra that facilitates the ON/OFF variation. Moreover, the length of the crown ether rings offers an insignificant impact on electronic transmission. Hence, we believe that these findings would deepen our understanding of QI patterns and exploit crown ether molecules more practically and efficiently in molecular devices.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. O. Sielcken, L. Van de Kuil, W. Drenth, J. Schoonman, R. Nolte, J. Am. Chem. Soc. 112, 3086 (1990)

    Google Scholar 

  2. Y. Geng, S. Sangtarash, C. Huang, H. Sadeghi, Y. Fu, W. Hong, T. Wandlowski, S. Decurtins, C.J. Lambert, S.-X. Liu, J. Am. Chem. Soc. 137, 4469 (2015)

    Google Scholar 

  3. A. Borges, G.C. Solomon, J. Phys. Chem. C 121, 8272 (2017)

    Google Scholar 

  4. L. Venkataraman, J.E. Klare, C. Nuckolls, M.S. Hybertsen, M.L. Steigerwald, Nature 442, 904 (2006)

    ADS  Google Scholar 

  5. Z.Y. Mijbil, Eur. Phys. J. B 92, 220 (2019)

    ADS  Google Scholar 

  6. Z.Y. Mijbil, Chem. Phys. Lett. 716, 69 (2019)

    ADS  Google Scholar 

  7. C.R. Arroyo, S. Tarkuc, R. Frisenda, J.S. Seldenthuis, C.H.M. Woerde, R. Eelkema, F.C. Grozema, H.S.J. van der Zant, Angew. Chem. Int. Ed. 52, 3152 (2013)

    Google Scholar 

  8. Y. Yang, M. Gantenbein, A. Alqorashi, J. Wei, S. Sangtarash, D. Hu, H. Sadeghi, R. Zhang, J. Pi, L. Chen, J. Phys. Chem. C 122, 14965 (2018)

    Google Scholar 

  9. W. Chen, H. Li, J.R. Widawsky, C. Appayee, L. Venkataraman, R. Breslow, J. Am. Chem. Soc. 136, 918 (2014)

    Google Scholar 

  10. G.C. Solomon, D.Q. Andrews, R.H. Goldsmith, T. Hansen, M.R. Wasielewski, R.P. Van Duyne, M.A. Ratner, J. Am. Chem. Soc. 130, 17301 (2008)

    Google Scholar 

  11. A.A. Al-Jobory, Z.Y. Mijbil, SN Appl. Sci., submitted

  12. C.J. Lambert, S.X. Liu, Chem. Eur. J. 24, 4193 (2018)

    Google Scholar 

  13. M.L. Kaplan, E.A. Rietman, R.J. Cava, L.K. Holt, E.A. Chandross, Solid State Ion. 25, 37 (1987)

    Google Scholar 

  14. O.A. Al-Owaedi, D.C. Milan, M.-C. Oerthel, S. Bock, D.S. Yufit, J.A.K. Howard, S.J. Higgins, R.J. Nichols, C.J. Lambert, M.R. Bryce, P.J. Low, Organometallics 35, 2944 (2016)

    Google Scholar 

  15. A. Ismael, I. Grace, C. Lambert, Thermopower of crown-ether-bridged anthraquinones, https://arXiv:1510.02922 (2015)

  16. S.-H. Liao, Y.-L. Li, T.-H. Jen, Y.-S. Cheng, S.-A. Chen, J. Am. Chem. Soc. 134, 14271 (2012)

    Google Scholar 

  17. J. Guo, J. Lee, C.I. Contescu, N.C. Gallego, S.T. Pantelides, S.J. Pennycook, B.A. Moyer, M.F. Chisholm, Nat. Commun. 5, 5389 (2014)

    ADS  Google Scholar 

  18. X. Liu, W. Jiao, M. Lei, Y. Zhou, B. Song, Y. Li, J. Mater. Chem. A 3, 9278 (2015)

    Google Scholar 

  19. M.M. Rananaware, V.D. Ghase, V.R. Patil, Polym. Bull. 76, 1277 (2019)

    Google Scholar 

  20. C. Liu, D. Walter, D. Neuhauser, R. Baer, J. Am. Chem. Soc. 125, 13936 (2013)

    Google Scholar 

  21. A.K. Ismael, A. Al-Jobory, I. Grace, C.J. Lambert, J. Chem. Phys. 146, 064704 (2017)

    ADS  Google Scholar 

  22. E. Wierzbinski, X. Yin, K. Werling, D.H. Waldeck, J. Phys. Chem. B 117, 4431 (2013)

    Google Scholar 

  23. M.J. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. Petersson,Gaussian 09, Revision D. 01 (Gaussian. Inc., Wallingford, CT, 2009)

  24. Z.Y. Mijbil, J. Phys. 1003, 012114 (2018)

    Google Scholar 

  25. C.T. White, J. Li, D. Gunlycke, J.W. Mintmire, Nano Lett. 7,825 (2007)

    ADS  Google Scholar 

  26. C.M. Goringe, D.R. Bowler, E. Hernández, Rep. Prog. Phys. 60, 1447 (1997)

    ADS  Google Scholar 

  27. G. Ma, X. Shen, L. Sun, R. Zhang, P. Wei, S. Sanvito, S. Hou, Nanotechnology 21, 495202 (2010)

    Google Scholar 

  28. Z.-L. Cheng, R. Skouta, H. Vazquez, J. Widawsky, S. Schneebeli, W. Chen, M. Hybertsen, R. Breslow, L. Venkataraman, Nat. Nanotechnol. 6, 353 (2011)

    ADS  Google Scholar 

  29. J.R. Widawsky, W. Chen, H. Vazquez, T. Kim, R. Breslow, M.S. Hybertsen, L. Venkataraman, Nano Lett. 13, 2889 (2013)

    ADS  Google Scholar 

  30. Z.Y. Mijbil, Eur. J. Phys. 40, 045801 (2019)

    Google Scholar 

  31. S. Datta, Electronic Transport in Mesoscopic Systems, Cambridge Studies in Semiconductor Physics and Microelectronic Engineering (Book 3) (Cambridge University Press, Cambridge, 1995)

  32. D.S. Fisher, P.A. Lee, Phys. Rev. B 23, 6851 (1981)

    ADS  MathSciNet  Google Scholar 

  33. K. Lambropoulos, C. Simserides, J. Phys. Commun. 2, 035013 (2018)

    Google Scholar 

  34. B.A. Stickler, W. Pötz, J. Comput. Electron. 12, 490 (2013)

    Google Scholar 

  35. T. Markussen, R. Stadler, K.S. Thygesen, Nano Lett. 10, 4260 (2010)

    ADS  Google Scholar 

  36. F.D. Mackey, Electron tunneling in the tight-binding approximation, thesis, University of Alabama Libraries, 2016

  37. D.A. Areshkin, D. Gunlycke, C.T. White, Nano Lett. 7, 204 (2007)

    ADS  Google Scholar 

  38. A. Hinkle, Tight-binding calculation of electronic properties of oligophenyl and oligoacene nanoribbons, thesis, Ball State University, 2008

  39. T.M. Wallis, N. Nilius, W. Ho, Phys. Rev. Lett. 89, 236802 (2002)

    ADS  Google Scholar 

  40. H. Ohnishi, Y. Kondo, K. Takayanagi, Nature 395, 780 (1998)

    ADS  Google Scholar 

  41. I. Deretzis, A. La Magna, Eur. Phys. J. B 81, 15 (2011)

    ADS  Google Scholar 

  42. C.J. Lambert, Chem. Soc. Rev. 44, 875 (2015)

    Google Scholar 

  43. C.A. Stafford, D.M. Cardamone, S. Mazumdar, Nanotechnology 18, 424014 (2007)

    ADS  Google Scholar 

  44. E.G. Petrov, Y.V. Shevchenko, V. May, P. Hänggi, J. Chem. Phys. 134, 204701 (2011)

    ADS  Google Scholar 

  45. S. Guo, J.M. Artés, I. Díez-Pérez, Electrochim. Acta 110, 741 (2013)

    Google Scholar 

  46. J. Martínez-Blanco, M. Klingsporn, K. Horn, Surf. Sci. 604, 523 (2010)

    ADS  Google Scholar 

  47. R. Otero, A.L. Vázquez de Parga, J.M. Gallego, Surf. Sci. Rep. 72, 105 (2017)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zainelabideen Y. Mijbil.

Additional information

Supplementary material in the form of one pdf file available from the Journal web page at https://doi.org/10.1140/epjb/e2020-100573-6.

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary data

PDF file

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mijbil, Z.Y., Essa, H.O. Destructive-quantum-interference suppression in crown ether single molecule junction. Eur. Phys. J. B 93, 106 (2020). https://doi.org/10.1140/epjb/e2020-100573-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2020-100573-6

Keywords

Navigation