Skip to main content
Log in

Origin of optical bandgap fluctuations in graphene oxide

  • Colloquium
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In this work, we explore the electrical, optical and spectroscopic properties of different Graphene Oxide (GO) samples focusing on new oxidative strategies to tune their physicochemical properties. Three types of GO samples were prepared by changing the oxidative conditions resulting in carbonyl-, epoxy- or hydroxyl-rich GO. These materials were characterized by UV-VIS absorption, Raman spectroscopy and X-ray diffraction. The experimental results indicate that all samples exhibit oxidation and exfoliation degrees typical of graphene oxides obtained by using the modified Hummers’ method. The optical bandgap values were measured using the Tauc’s plot from UV-VIS data and showed that the stoichiometry of GO impacts the width of the bandgap. The carbonyl-rich sample presented the lowest gap around 3.20 ± 0.02 eV, while epoxy- and hydroxyl-rich GOs showed out gaps of about 3.48 ± 0.07 and 3.72 ± 0.05 eV, respectively. These experimental results are consistent with theoretical calculations of bandgaps obtained with coronene and circumcoronene GO models. The calculations were obtained using different theoretical approaches, such as: Huckel, PM3, AM1 and DFT. The present work suggests that a precise tuning of the optical bandgap of GOs can be achieved by only changing their stoichiometry thus allowing their use in a large range of electronic applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Md. Sajibul Alam Bhuyan, Md. Nizam Uddin, … Sayed Shafayat Hossain

References

  1. K.S. Novoselov et al., Science 306, 666 (2004)

    ADS  Google Scholar 

  2. B. Brodie, Philos. Trans. R. Soc. London 149, 249 (1859)

    ADS  Google Scholar 

  3. R.K. Singh, R. Kumar, D.P. Singh, RSC Adv. 6, 64993 (2016)

    Google Scholar 

  4. F. Li, X. Jiang, J. Zhao, S. Zhang, Nano Energy 16, 488 (2015)

    Google Scholar 

  5. A.H. Lima et al., Org. Electron. 49, 165 (2017)

    Google Scholar 

  6. X. Wu et al., J. Mater. Chem. C 2, 4044 (2014)

    Google Scholar 

  7. Z. Yin et al., ACS Nano 4, 5263 (2010)

    Google Scholar 

  8. G. Eda et al., Appl. Phys. Lett. 92, 1 (2008)

    Google Scholar 

  9. J. Abraham et al., Nat. Nanotechnol. 12, 546 (2017)

    ADS  Google Scholar 

  10. C. Buelke et al., Desalination 448, 113 (2018)

    Google Scholar 

  11. J. Kim et al., Anal. Chem. 89, 232 (2016)

    Google Scholar 

  12. Y. Wang, Z. Li, J. Wang, J. Li, Y. Lin, Trends Biotechnol. 29, 205 (2011)

    Google Scholar 

  13. D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, Chem. Soc. Rev. 39, 228 (2010)

    Google Scholar 

  14. C. Rae, Energy Storage Mater. 14, 8 (2018)

    Google Scholar 

  15. M.S. Chang et al., Chem. Mater. 29, 307 (2017)

    Google Scholar 

  16. J.H. Kang et al., Chem. Mater. 28, 756 (2016)

    Google Scholar 

  17. L. Zhang et al., Carbon 47, 3365 (2009)

    Google Scholar 

  18. D.C. Marcano et al., ACS Nano 4, 4806 (2010)

    Google Scholar 

  19. S. William, J. Hummers, R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958)

    Google Scholar 

  20. H. He, T. Riedl, A. Lerf, J. Klinowski, J. Phys. Chem. 100, 19954 (1996)

    Google Scholar 

  21. A. Lerf, H. He, M. Forster, J. Klinowski, J. Phys. Chem. B 102, 4477 (1998)

    Google Scholar 

  22. K. Krishnamoorthy, M. Veerapandian, K. Yun, S.J. Kim, Carbon 53, 38 (2013)

    Google Scholar 

  23. J. Chen et al., Chem. Sci. 7, 1874 (2016)

    Google Scholar 

  24. A. Hunt, E.Z. Kurmaev, A. Moewes, Carbon 75, 366 (2014)

    Google Scholar 

  25. P. Johari, V.B. Shenoy, ACS Nano 5, 7640 (2011)

    Google Scholar 

  26. T. Hasan et al., Sci. Rep. 3–5 (2017)

  27. G. Eda, C. Mattevi, H. Yamaguchi, H. Kim, M. Chhowalla, J. Phys. Chem. C 113, 15768 (2009)

    Google Scholar 

  28. S.S. Li et al., ACS Nano 4, 3169 (2010)

    Google Scholar 

  29. P.V. Kumar, M. Bernardi, J.C. Grossman, ACS Nano 7, 1638 (2013)

    Google Scholar 

  30. J. Tauc, Mater. Res. Bull. 3, 37 (1968)

    Google Scholar 

  31. J.P.A. de Mendonça, et al., Mater. Chem. Phys. 215, 203 (2018)

    Google Scholar 

  32. J.P. Almeida de Mendonça, et al., Mater. Res. Express 3, 055020 (2016)

    ADS  Google Scholar 

  33. V. Ludwig et al., Graphene Technol. 5, 1 (2020)

    Google Scholar 

  34. G.M.A. Junqueira, J.P.A. Mendonça, A.H. Lima, W.G. Quirino, F. Sato, RSC Adv. 6, 94437 (2016)

    Google Scholar 

  35. K.P. Loh, Q. Bao, G. Eda, M. Chhowalla, Nat. Chem. 2, 1015 (2010)

    Google Scholar 

  36. C. Gómez-Navarro et al., Nano Lett. 10, 1144 (2010)

    ADS  Google Scholar 

  37. E.B.V. Freire, J.P.A. de Mendonça, S. Ullah, G.M.A. Junqueira, F. Sato, J. Mater. Sci. 53, 7516 (2018)

    ADS  Google Scholar 

  38. A. You, M.A.Y. Be, I. In, J. Chem. Phys. 39, 1397 (2004)

    Google Scholar 

  39. J.J.P. Stewart, J. Comput. Chem. 10, 209 (1989)

    Google Scholar 

  40. M.J.S. Dewar, E.G. Zoebisch, E.F. Healy, J.J.P. Stewart, J. Am. Chem. Soc. 13, 1 (2001)

    Google Scholar 

  41. C.E. Dykstra, G. Frenking, K.S. Kim, G.E. Scuseria, eds., inTheory and Applications of Computational Chemistry (Elsevier, Amsterdam, 2005), pp. 1185–1189

  42. M.W. Schmidt et al., J. Comput. Chem. 14, 1347 (1993)

    Google Scholar 

  43. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    ADS  Google Scholar 

  44. M. Soler et al., J. Phys.: Condens. Matter 14, 2745 (2002)

    ADS  Google Scholar 

  45. J. Chen, B. Yao, C. Li, G. Shi, Carbon 64, 225 (2013)

    Google Scholar 

  46. C. Botas et al., Carbon 65, 156 (2013)

    Google Scholar 

  47. J. Jia, C.M. Kan, X. Lin, X. Shen, J.K. Kim, Carbon 77, 244 (2014)

    Google Scholar 

  48. J. He, L. Fang, Curr. Appl. Phys. 16, 1152 (2016)

    ADS  MathSciNet  Google Scholar 

  49. P.H. Wadekar et al., ChemistrySelect 3, 5630 (2018)

    Google Scholar 

  50. A.M. Dimiev, S. Eigler,Graphene Oxide: Fundamentals and Applications (John Wiley & Sons, New York, 2017)

  51. J. Park et al., Nanoscale 1, 1 (2016)

    Google Scholar 

  52. J. Shang et al., Sci. Rep. 2, 792 (2012)

    Google Scholar 

  53. T.T. Dang et al., J. Colloid Interface Sci. 376, 91 (2012)

    ADS  Google Scholar 

  54. M. Khanzadeh, M. Dehghanipour, M. Karimipour, M. Molaei, Opt. Mater. 66, 664 (2017)

    ADS  Google Scholar 

  55. Y. Lu et al., J. Mater. Chem. 22, 2929 (2012)

    Google Scholar 

  56. D. Roy Chowdhury, C. Singh, A. Paul, RSC Adv. 4, 15138 (2014)

    Google Scholar 

  57. Y. Xu, K. Sheng, C. Li, G. Shi, J. Mater. Chem. 21, 7376 (2011)

    Google Scholar 

  58. F. Shahzad, S.A. Zaidi, C.M. Koo, ACS Appl. Mater. Interfaces 9, 24179 (2017)

    Google Scholar 

  59. A.R.S. Santha Kumar, et al., Mater. Chem. Phys. 182, 237 (2016)

    Google Scholar 

  60. H.A. Becerril et al., ACS Nano 2, 463 (2008)

    Google Scholar 

  61. R. Wu, Y. Wang, L. Chen, L. Huang, Y. Chen, RSC Adv. 5, 49182 (2015)

    Google Scholar 

  62. Y. Liu et al., Nanotechnology 29, 185601 (2018)

    ADS  Google Scholar 

  63. G. Eda et al., Adv. Mater. 22, 505 (2010)

    Google Scholar 

  64. J. Robertson, Mater. Sci. Eng. R 37, 129 (2002)

    Google Scholar 

  65. A. Mathkar et al., J. Phys. Chem. Lett. 3, 986 (2012)

    Google Scholar 

  66. S. Kimiagar, F. Abrinaei, Nanophotonics 7, 243 (2018)

    Google Scholar 

  67. T.A. Amollo, G.T. Mola, V.O. Nyamori, Sol. Energy 171, 83 (2018)

    ADS  Google Scholar 

  68. M.A. Velasco-Soto et al., Carbon 93, 967 (2015)

    Google Scholar 

  69. Yang, H. Bin, Y.Q. Dong, X. Wang, S.Y. Khoo, B. Liu, ACS Appl. Mater. Interfaces 6, 1092 (2014)

    Google Scholar 

  70. L. Stobinski et al., J. Electron Spectrosc. Relat. Phenomena 195, 145 (2014)

    Google Scholar 

  71. A. Kaniyoor, T.T. Baby, T. Arockiadoss, N. Rajalakshmi, S. Ramaprabhu, J. Phys. Chem. C 115, 17660 (2011)

    Google Scholar 

  72. C. Toby, G. Smith, Graphene Oxide Material Interfaces in Electronics, Energy and Environmental Membranes, Thesis, University of Surrey, 2016

  73. A.K. Sahu et al., J. Phys. Chem. C 120, 15855 (2016)

    Google Scholar 

  74. G. Wang, J. Yang, J. Park, X. Gou, B. Wang, H. Liu, J. Yao, J. Phys. Chem. C 112, 8192 (2008)

    Google Scholar 

  75. S. Pei, J. Zhao, J. Du, W. Ren, H.-M. Cheng, Carbon 48, 4466 (2010)

    Google Scholar 

  76. X. Huang, H. Yu, Z. Wu, Y. Li, J. Solid State Electrochem. 22, 317 (2017)

    Google Scholar 

  77. H. Yan et al., J. Hazard. Mater. 268, 191 (2014)

    ADS  Google Scholar 

  78. G. Wang, X. Sun, C. Liu, J. Lian, Appl. Phys. Lett. 99, 053114 (2011)

    ADS  Google Scholar 

  79. T. Yumura, A. Yamasaki, Phys. Chem. Chem. Phys. 16, 9656–9666 (2014)

    Google Scholar 

  80. L. Wang, T. Ma, Y. Hu, H. Wang, Phys. Rev. B 86, 125436 (2012)

    ADS  Google Scholar 

  81. Y. Xu, K. Sheng, C. Li, G. Shi, J. Mater. Chem. 21, 7376 (2011)

    Google Scholar 

  82. D.R. Dreyer, A.D. Todd, C.W. Bielawski, Chem. Soc. Rev. 43, 5288 (2014)

    Google Scholar 

  83. J. Liu et al., Adv. Mater. 24, 2228 (2012)

    Google Scholar 

  84. H. Shi et al., Sci. China Phys. Mech. Astron. 58, 1 (2015)

    Google Scholar 

  85. C.Y. Su et al., Chem. Mater. 21, 5674 (2009)

    Google Scholar 

  86. J. Wu et al., Appl. Phys. Lett. 92, 10 (2008)

    Google Scholar 

  87. S.J. Wang, Y. Geng, Q. Zheng, J.-K. Kim, Carbon 48, 1815 (2010)

    Google Scholar 

  88. J. Wu et al., Appl. Phys. Lett. 92, 263302 (2008)

    ADS  Google Scholar 

  89. A. Eckmann et al., Nano Lett. 12, 3925 (2012)

    ADS  Google Scholar 

  90. S. Claramunt et al., J. Phys. Chem. C 119, 10123 (2015)

    Google Scholar 

  91. D. López-Díaz, M. López Holgado, J.L. García-Fierro, M.M. Velázquez, J. Phys. Chem. C 121, 20489 (2017)

    Google Scholar 

  92. A.C. Ferrari, Solid State Commun. 143, 47 (2007)

    ADS  Google Scholar 

  93. A. Jorio, R. Saito, G. Dresselhaus, M.S. Dresselhaus,Raman Spectroscopy in Graphene Related Systems (Wiley-VCH Verlag GmbH & Co. KGa, Weinheim, 2010)

  94. L.G. Cançado, et al., Nano Lett. 11, 3190 (2011)

    ADS  Google Scholar 

  95. A. Ferrari, J. Robertson, Phys. Rev. B 61, 14095 (2000)

    ADS  Google Scholar 

  96. I.K. Moon, J. Lee, R.S. Ruoff, H. Lee, Nat. Commun. 1, 73 (2010)

    ADS  Google Scholar 

  97. R. Voggu, B. Das, C.S. Rout, C.N.R. Rao, J. Phys.: Condens. Matter 20, 472204 (2008)

    Google Scholar 

  98. A. Jorio, ISRN Nanotechnol. 2012, 1 (2012)

    Google Scholar 

  99. M.S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, R. Saito, Nano Lett. 10, 751 (2010)

    ADS  Google Scholar 

  100. C. Mattevi et al., Adv. Funct. Mater. 19, 2577 (2009)

    Google Scholar 

  101. M.M. Lucchese et al., Carbon 48, 1592 (2010)

    Google Scholar 

  102. S. Eigler, C. Dotzer, A. Hirsch, Carbon 50, 3666 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Paulo Almeida de Mendonça.

Additional information

Supplementary material in the form of one pdf file available from the Journal web page at https://doi.org/10.1140/epjb/e2020-100578-7

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary data

PDF file

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Lima, A.H., Tavares, C.T., da Cunha, C.C.S. et al. Origin of optical bandgap fluctuations in graphene oxide. Eur. Phys. J. B 93, 105 (2020). https://doi.org/10.1140/epjb/e2020-100578-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2020-100578-7

Keywords

Navigation